Skip to main content
Log in

The seasonal activity and the effect of mechanical bending and wounding on the PtCOMT promoter in Betula pendula Roth

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

In this study, 900-bp (signed as p including nucleotides –1 to –886) and partly deleted (signed as dp including nucleotides –1 to –414) COMT (caffeate/5-hydroxyferulate O-methyltransferase) promoters from Populus tremuloides Michx. were fused to the GUS reporter gene, and the tissue-specific expression patterns of the promoters were determined in Betula pendula Roth along the growing season, and as a response to mechanical bending and wounding. The main activity of the PtCOMTp- and PtCOMTdp-promoters, determined by the histochemical GUS assay, was found in the developing xylem of stems during the 8th–13th week and in the developing xylem of roots in the 13th week of the growing season. The GUS expression patterns did not differ among the xylem cell types. The PtCOMT promoter-induced GUS expression observed in phloem fibres suggests a need for PtCOMT expression and thus syringyl (S) lignin synthesis in fibre lignification. However, the PtCOMTdp-promoter induced GUS expression in stem trichomes, which may contribute to the biosynthesis of phenylpropanoid pathway-derived compounds other than lignin. Finally, a strong GUS expression was induced by the PtCOMT promoters in response to mechanical stem bending but not to wounding. The lack of major differences between the PtCOMTp- and PtCOMTdp-promoters suggests that the deleted promoter sequence (including nucleotides −415 to −886) did not contain a significant regulatory element contributing to the GUS expression in young B. pendula trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

COMT:

Caffeate/5-hydroxyferulate O-methyltransferase

G:

Guaiacyl

GUS:

β-Glucuronidase

S:

Syringyl

References

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294. doi:10.1016/S0031-9422(02)00211-X

    Article  PubMed  CAS  Google Scholar 

  • Aronen T, Häggman H, Hohtola A (1994) Transient β-glucuronidase expression in Scots pine tissues derived from mature trees. Can J For Res 24:2006–2011

    CAS  Google Scholar 

  • Aronen T, Tiimonen H, Tsai C-J, Jokipii S, Chen X, Chiang V, Häggman H (2003) Altered lignin in transgenic silver birch (Betula pendula) expressing PtCOMT gene. In: Espinel S, Barredo Y, Ritter E (eds) Sustainable forestry, wood products and biotechnology. DFA-AFA Press, Vitoria-Gasteiz, pp 149–161

    Google Scholar 

  • Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: Genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38:305–350. doi:10.1080/10409230391036757

    Article  PubMed  CAS  Google Scholar 

  • Baucher M, Monties B, Van Montagu M, Boerjan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17:125–197. doi:10.1016/S0735-2689(98)00360–8

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546. doi:10.1146/annurev.arplant.54.031902.134938

    Article  PubMed  CAS  Google Scholar 

  • Bugos RC, Chiang VLC, Campbell WH (1991) cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen. Plant Mol Biol 17:1203–1215. doi:10.1007/BF00028736

    Article  PubMed  CAS  Google Scholar 

  • Capellades M, Torres MA, Bastisch I, Stiefel V, Vignols F, Bruce WB, Peterson D, Puigdomènech P, Rigau J (1996) The maize caffeic acid O-methyltransferase gene promoter is active in transgenic tobacco and maize plant tissues. Plant Mol Biol 31:307–322. doi:10.1007/BF00021792

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    CAS  Google Scholar 

  • Charest P, Devantier Y, Lachance D (1996) Stable genetic transformation of Picea mariana (Black spruce) via particle bombardment. In Vitro Cell Dev Biol 32:91–99

    Article  Google Scholar 

  • Chen C, Meyermans H, Burggraeve B, De Rycke RM, Inoue K, De Vleesschauwer V, Steenackers M, Van Montagu MC, Engler GJ, Boerjan WA (2000) Cell-specific and conditional expression of caffeoylcoenzyme A-3-O-methylransferase in poplar. Plant Physiol 123:853–867

    Article  PubMed  CAS  Google Scholar 

  • Chiang VL, Funaoka M (1990) The dissolution and condensation reactions of guaiacyl and syringyl units in residual lignin during kraft delignification of sweetgum. Holzforschung 44:147–156

    CAS  Google Scholar 

  • Fergus BJ, Goring DAI (1970) The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung 24:113–117

    Article  CAS  Google Scholar 

  • Feuillet C, Lauvergeat V, Deswarte C, Pilate G, Boudet A, Grima-Pettenati J (1995) Tissue- and cell-specific expression of a cinnamyl alcohol dehydrogenase promoter in transgenic poplar plants. Plant Mol Biol 27:651–667. doi:10.1007/BF00020220

    Article  PubMed  CAS  Google Scholar 

  • Grand C, Boudet AM, Ranjeva R (1982) Natural variations and controlled changes in lignification process. Holzforschung 36:217–223

    Article  CAS  Google Scholar 

  • Hardell H-L, Leary GJ, Stoll M, Westermark U (1980) Variations in lignin structure in defined morphological parts of birch. Svensk Papperstidning 83:71–74

    CAS  Google Scholar 

  • Harmatha J, Nawrot J (2002) Insect feeding deterrent activity of lignans and related phenylpropanoids with a methylenedioxyphenyl (piperonyl) structure moiety. Entomol Exp Appl 104:51–60. doi:10.1023/A:1021286002077

    Article  CAS  Google Scholar 

  • Hawkins S, Boudet A (2003) ‘Defence lignin’ and hydroxycinnamyl alcohol dehydrogenase activities in wounded Eucalyptus gunnii. Forest Pathol 33:91–104. doi:10.1046/j.1439-0329.2003.00308.x

    Article  Google Scholar 

  • Hawkins S, Boudet A, Grima-Pettenati J (2003) Characterisation of caffeic acid O-methyltransferase and cinnamyl alcohol dehydrogenase gene expression patterns by in situ hybridisation in Eucalyptus gunnii Hook plantlets. Plant Sci 164:165–173. doi:10.1016/S0168-9452(02)00361-8

    Article  CAS  Google Scholar 

  • Hawkins S, Samaj J, Lauvergeat V, Boudet A, Grima-Pettenati J (1997) Cinnamyl alcohol dehydrogenase: identification of new sites of promoter activity in transgenic poplar. Plant Physiol 113:321–325

    PubMed  CAS  Google Scholar 

  • Hoffman L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446–1465. doi:10.1105/tpc.020297

    Article  Google Scholar 

  • Jefferson R (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Joseleau J-P, Imai T, Kuroda K, Ruel K (2004) Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta 219:338–345. doi:10.1007/s00425-004-1226-5

    Article  PubMed  CAS  Google Scholar 

  • Lauvergeat V, Rech P, Jauneau A, Guez C, Coutos-Thevenot P, Grima-Pettenati J (2002) The vascular expression pattern directed by the Eucalyptus gunnii cinnamyl alcohol dehydrogenase EgCAD2 promoter is conserved among woody and herbaceous plant species. Plant Mol Biol 50:497–509. doi:10.1023/A:1019817913604

    Article  PubMed  CAS  Google Scholar 

  • Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13:1567–1585

    Article  PubMed  CAS  Google Scholar 

  • Li L, Lu S, Chiang V (2006) A genomic and molecular view of wood formation. Crit Rev Plant Sci 25:215–233. doi:10.1080/07352680600611519

    Article  CAS  Google Scholar 

  • Lodhi MA, Ye G-N, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • MacRae DW, Towers NGH (1984) Biolocigal activities of lignans. Phytochemistry 23:1207–1220

    Article  CAS  Google Scholar 

  • Meng H, Campbell WH (1998) Substrate profiles and expression of caffeoyl coenzyme A and caffeic acid O-methyltransferases in secondary xylem of aspen during seasonal development. Plant Mol Biol 38:513–520. doi:10.1023/A:1006071708728

    Article  PubMed  CAS  Google Scholar 

  • Musha Y, Goring DAI (1975) Distribution of syringyl and guaiacyl moieties in hardwoods as indicated by ultraviolet microscopy. Wood Sci Technol 9:45–58. doi:10.1007/BF00351914

    Article  CAS  Google Scholar 

  • Nilsson O, Little CHA, Sandberg G, Olsson O (1996) Expression of two heterologous promoters, Agrobacterium rhizogenes rolC and cauliflower mosaic virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy. Plant Mol Biol 31:887–895. doi:10.1007/BF00019475

    Article  PubMed  CAS  Google Scholar 

  • Paux E, Carocha V, Marques C, Mendes de Sousa A, Borralho N, Sivadon P, Grima-Pettenati J (2005) Transcript profiling of Eucalyptus xylem genes during tension wood formation. New Phytol 167:89–100 doi:10.1111/j.1469-8137.2005.01396.x

    Article  PubMed  CAS  Google Scholar 

  • Rech P, Grima-Pettenati J, Jauneau A (2003) Fluorescence microscopy: a powerful technique to detect low GUS activity in vascular tissues. Plant J 33:205–209. doi:10.1046/j.1365-313X.2003.016017.x

    Article  PubMed  CAS  Google Scholar 

  • Robertson D, Weissinger A, Ackley R, Glover S, Sederoff R (1992) Genetic transformation of Norway spruce (Picea abies (L.) Karst) using somatic embryo explants by microprojectile bombardment. Plant Mol Biol 19:925–935. doi:10.1007/BF00040525

    Article  PubMed  CAS  Google Scholar 

  • Saka S, Goring DAI (1988) The distribution of lignin in white birch wood as determined by bromination with TEM-EDXA. Holzforschung 42:149–153

    Article  CAS  Google Scholar 

  • Sarkanen KV, Hergert HL (1971) Classification and distribution. In: Sarkanen KV, Ludwig CH (eds) Lignins: occurrence, formation, structure and reaction. Wiley, New York, pp 43–94

    Google Scholar 

  • Scurfield G (1973) Reaction wood: its structure and function. Science 179:647–655. doi:10.1126/science.179.4074.647

    Article  PubMed  CAS  Google Scholar 

  • Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang C-F, Lynn D, Dow JM, Roberts K, Martin C (1998) Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell 10:1801–1816

    Article  PubMed  CAS  Google Scholar 

  • Tiimonen H, Aronen T, Laakso T, Saranpää P, Chiang V, Ylioja T, Roininen H, Häggman H (2005) Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)? Planta 222:699–708. doi:10.1007/s00425-005-0002-5

    Article  PubMed  CAS  Google Scholar 

  • Timell TE (1969) The chemical composition of tension wood. Svensk Papperstidning 72:173–178

    CAS  Google Scholar 

  • Tsai C-J, Mielke MR, Podila GK, Chiang VL (1996) 3' cycle-labeled oligonucleotides with predictable length for primer extension and transgene analysis. Nucleic Acids Res 24:5060–5061

    Article  PubMed  CAS  Google Scholar 

  • Valjakka M, Aronen T, Kangasjärvi J, Vapaavuori E, Häggman H (2000) Genetic transformation of silver birch (Betula pendula) by particle bombardment. Tree Physiol 20:607–613

    PubMed  Google Scholar 

  • Walter MH (1992) Regulation of lignification in defence. In: Boller FMT (ed) Genes involved in plant defence. Springer, Vienna, pp 327–352

    Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288. doi:10.1146/annurev.py.18.090180.001355

    Article  CAS  Google Scholar 

  • Zhong R, Morrison III HW, Himmelsbach DS, Poole II FL, Ye Z-H (2000) Essential role of caffeoyl coenzyme a O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol 124:563–577

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the technical personnel at the Finnish Forest Research Institute for their notable contribution to this work. We kindly thank Prof. Wout Boerjan for his valuable comments on the manuscript. Dr. Anneli Kauppi is acknowledged for her aid in the microscopical analyses. This research was financed by the Regional Fund of Etelä-Savo of the Finnish Cultural Foundation (a grant to Heidi Tiimonen), TEKES, the National Technology Agency (Projects 40383/01 and 40481/03 to Metla and the University of Oulu) and the Academy of Finland (grant no. 105214 to Hely Häggman).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Tiimonen.

Additional information

Communicated by L. Jouanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiimonen, H., Häggman, H., Tsai, CJ. et al. The seasonal activity and the effect of mechanical bending and wounding on the PtCOMT promoter in Betula pendula Roth. Plant Cell Rep 26, 1205–1214 (2007). https://doi.org/10.1007/s00299-007-0331-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0331-x

Keywords

Navigation