Skip to main content
Log in

Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)?

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Transgenic silver birch (Betula pendula Roth) lines were produced in order to modify lignin biosynthesis. These lines carry COMT (caffeate/5-hydroxyferulate O-methyltransferase) gene from Populus tremuloides driven by constitutive promoter 35S CaMV (cauliflower mosaic virus) or UbB1 (ubiquitin promoter from sunflower). The decreased syringyl/guaiacyl (S/G) ratio was found in stem and leaf lignin of 35S CaMV-PtCOMT transgenic silver birch lines when compared to non-transformed control or UbB1–PtCOMT lines. In controlled feeding experiments the leaves of transgenic birch lines as well as controls were fed to insect herbivores common in boreal environment, i.e., larvae of Aethalura punctulata, Cleora cinctaria and Trichopteryx carpinata (Lepidoptera: Geometridae) as well as the adults of birch leaf-feeding beetles Agelastica alni (Coleoptera: Chrysomelidae) and Phyllobius spp. (Coleoptera: Curculionidae). The feeding preferences of these herbivores differed in some cases among the tested birch lines, but these differences could not be directly associated to lignin modification. They could as well be explained by other characteristics of leaves, either natural or caused by transgene site effects. Growth performance of lepidopteran larvae fed on transgenic or control leaves did not differ significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

COMT :

Caffeate/5-hydroxyferulate O-methyltransferase

S/G:

Syringyl/guaiacyl

References

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294

    Article  PubMed  CAS  Google Scholar 

  • Aronen T, Häggman H (1995) Differences in Agrobacterium infections in silver birch and Scots pine. Eur J Forest Pathol 25:197–213

    Article  Google Scholar 

  • Aronen T, Tiimonen H, Tsai C-J, Jokipii S, Chen X, Chiang V, Häggman H (2003) Altered lignin in transgenic silver birch (Betula pendula) expressing PtCOMT gene. In: Espinel S, Barredo Y, Ritter E (eds) Sustainable forestry, wood products and biotechnology. DFA-AFA Press, Vitoria-Gasteiz, Spain, pp 149–161

    Google Scholar 

  • Ayres MP, Clausen TP, MacLean SFJ, Redman AM, Reichardt PB (1997) Diversity of structure and antiherbivore activity in condensed tannins. Ecology 78:1696–1712

    Article  Google Scholar 

  • Baucher M, Monties B, Van Montagu M, Boerjan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17:125–197

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Bugos RC, Chiang VLC, Campbell WH (1991) cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen. Plant Mol Biol 17:1203–1215

    Article  PubMed  CAS  Google Scholar 

  • Campbell FT, Asante-Owusu R (2001) GE trees: proceed only with caution. In: Strauss SH, Bradshaw HDT (eds) International symposium on ecological and societal aspects of transgenic plantations. Columbia River Gorge, USA, http://www.fsl.orst.edu/tgerc/iufro2001/eprocd.pdf

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    CAS  Google Scholar 

  • Dyckmans J, Flessa H, Brinkmann K, Mai C, Polle A (2002) Carbon and nitrogen dynamics in acid detergent fibre lignins of beech (Fagus sylvatica L.) during the growth phase. Plant Cell Environ 25:469–478

    Article  CAS  Google Scholar 

  • Effland MJ (1977) Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi 10:143–144

    Google Scholar 

  • Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, Lu F, Ralph J, Mila I, Barrière Y, Lapierre C, Jouanin L (2003) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol 51:973–989

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Chen F, Wheeler J, Winder J, Selman S, Peterson M, Dixon RA (2001) Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res 10:457–464

    Article  PubMed  CAS  Google Scholar 

  • Haapanen M, Mikola J (2004) Metsänjalostus 2050—Pitkän aikavälin metsänjalostusohjelma. Forest Tree Breeding 2050. Finland’s long-term tree breeding program. Finnish Forest Research Institute, p 61

  • Haukioja E (2003) Putting the insect into the birch-insect interaction. Review. Oecologia 136:161–168

    Article  PubMed  Google Scholar 

  • He X, Hall MB, Gallo-Meagher M, Smith RL (2003) Improvement of forage quality by downregulation of maize O-methyltransferase. Crop Sci 43:2240–2251

    Article  CAS  Google Scholar 

  • Higuchi T (1985) Biosynthesis and biodegradation of wood components. Academic, New York

    Google Scholar 

  • Hu W-J, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai C-J, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in trangenic trees. Nat Biotechnol 17:808–812

    Article  PubMed  CAS  Google Scholar 

  • James RR, Difazio SP, Brunner AM, Strauss SH (1998) Environmental effects of genetically engineered woody biomass crops. Biomass Bioenergy 14:403–414

    Article  CAS  Google Scholar 

  • Jung HG, Deetz DA (1993) Cell wall lignification and degradability. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. ASA-CSSA-SSSA, Madison, pp 315–346

    Google Scholar 

  • Jung H-JG, Ni W, Chapple CCS, Meyer K (1999) Impact of lignin composition on cell-wall degradability in an Arabidopsis mutant. J Sci Food Agr 79:922–928

    Article  CAS  Google Scholar 

  • Keinonen-Mettälä, Pappinen A, von Weissenberg K (1998) Comparisons of the efficiency of some promoters in silver birch (Betula pendula). Plant Cell Rep 17:356–361

    Article  Google Scholar 

  • Laitinen M-L, Julkunen-Tiitto R, Yamaji K, Heinonen J, Rousi M (2004) Variation in birch bark secondary chemistry between and within clones: implications for herbivory by hares. Oikos 104:316–326

    Article  CAS  Google Scholar 

  • Lam TB-T, Iiyama K, Stone BA (2003) Hot alkali-labile linkages in the walls of the forage grass Phalaris aquatica and Lolium perenne and their relation to in vitro wall digestibility. Phytochemistry 64:603–607

    Article  PubMed  CAS  Google Scholar 

  • Lodhi MA, Ye G-N, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • Mutikainen P, Walls M, Ovaska J, Keinänen M, Julkunen-Tiitto R, Vapaavuori E (2000) Herbivore resistance in Betula pendula: effect of fertilization, defoliation, and plant genotype. Ecology 81:49–65

    Google Scholar 

  • Ossipov V, Haukioja E, Ossipova S, Hanhimäki S, Pihlaja K (2001) Phenolic and phenolic-related factors as determinants of suitability of mountain birch leaves to an herbivorous insect. Biochem Syst Ecol 29:223–240

    Article  PubMed  CAS  Google Scholar 

  • Palva T (2000) Functional genomics of birch. In: Paavilainen L (ed) Metsäalan tutkimusohjelma. Vuosikirja 1999. Tammer-Paino Oy, Tampere, Finland

  • Pasonen H-L, Seppänen S-K, Degefu Y, Rytkönen A, von Weissenberg K, Pappinen A (2004) Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor Appl Genet 109:562–570

    Article  PubMed  CAS  Google Scholar 

  • Peltola A (2003) Finnish statistical yearbook of forestry 2003. Finnish Forest Research Institute, Vammala

    Google Scholar 

  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leplé J, Pollet B, Mila I, Webster AD, Marstorp H, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612

    Article  PubMed  CAS  Google Scholar 

  • Prittinen K, Pusenius J, Koivunoro K, Roininen H (2003a) Genotypic variation in growth and resistance to insect herbivory in silver birch (Betula pendula) seedlings. Oecologia 442:572–577

    Article  Google Scholar 

  • Prittinen K, Pusenius J, Koivunoro K, Rousi M, Roininen H (2003b) Mortality in seedlings populations of silver birch: genotypic variation and herbivore effects. Funct Ecol 17:658–663

    Article  Google Scholar 

  • Rae AL, Manners JM, Jones RJ, McIntyre CL, Lu D-Y (2001) Antisense suppression of the lignin biosynthetic enzyme, caffeate O-methyltransferase, improves in vitro digestibility of the tropical pasture legume, Stylosanthes humilis. Aust J Plant Physiol 28:289–297

    CAS  Google Scholar 

  • Rolando C, Monties B, Lapierre C (1992) Methods in lignin chemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rousi M, Tahvanainen J, Henttonen H, Herms DA, Uotila I (1997) Clonal variation in susceptibility of white birches (Betula spp.) to mammalian and insect herbivores. Forest Sci 43:396–402

    Google Scholar 

  • Ryynänen L, Ryynänen M (1986) Propagation of adult curly-birch succeeds with tissue culture. Silva Fenn 20:139–147

    Google Scholar 

  • Saalas U (1949) Suomen metsähyönteiset sekä muut metsälle vahingolliset ja hyödylliset eläimet. Werner Söderström Osakeyhtiö, Porvoo and Helsinki

    Google Scholar 

  • Sarkanen KV (1971) Lignins: Occurrence, formation, structure and reaction. Wiley-Interscience, New York

    Google Scholar 

  • Sewalt VJH, Beauchemin KA, Rode LM, Acharya S, Baron VS (1997) Lignin impact on fiber degradation. IV. Enzymatic saccharification and in vitro digestibility of alfalfa and grasses following selective solvent delignification. Bioresource Technol 61:199–206

    Article  CAS  Google Scholar 

  • Stafford HA (1988) Proanthocyanidins and the lignin connection. Phytochemistry 27:1–6

    Article  CAS  Google Scholar 

  • Tikkanen O-P, Rousi M, Ylioja T, Roininen H (2003) No negative correlation between growth and resistance to multiple herbivory in a deciduous tree, Betula pendula. Forest Ecol Manag 177:587–592

    Article  Google Scholar 

  • Vailhé MAB, Migné C, Cornu A, Maillot MP, Grenet E, Besle JM (1996) Effect of modification of the O-methyltransferase activity on cell wall composition, ultrastructure and degradability of transgenic tobacco. J Sci Food Agr 72:385–391

    Article  Google Scholar 

  • Valjakka M, Aronen T, Kangasjärvi J, Vapaavuori E, Häggman H (2000) Genetic transformation of silver birch (Betula pendula) by particle bombardment. Tree Physiol 20:607–613

    PubMed  Google Scholar 

  • Voipio R, Laakso T (1992) Chemical composition of the above ground biomass of small-sized trees. Folia For 789:1–22

    Google Scholar 

Download references

Acknowledgements

We are grateful for the technical personnel at the Finnish Forest Research Institute (Punkaharju Research Station and Vantaa Research Centre) for their contribution in this work. We thank Dr. Matti Rousi from the Finnish Forest Research Institute, Punkaharju Research Station, for valuable comments on the manuscript. This research was financed by the Finnish Cultural Foundation and TEKES, the National Technology Agency (Projects 40383/01 and 40481/03 to Metla and University of Oulu), Academy of Finland (grant no. 105214 to Hely Häggman) and the Foundation of Heikki and Hilma Honkanen (grant to Heidi Tiimonen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Tiimonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiimonen, H., Aronen, T., Laakso, T. et al. Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)?. Planta 222, 699–708 (2005). https://doi.org/10.1007/s00425-005-0002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0002-5

Keywords

Navigation