Skip to main content

Advertisement

Log in

Functional analysis of a novel male fertility CYP86MF gene in Chinese cabbage (Brassica campestris L. ssp. chinensis makino)

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

In our earlier work, a cytochrome P450 CYP86MF gene was isolated from floral bud of Chinese cabbage (Brassica campestris L. ssp. chinensis Makino, syn. B. rapa L.) by mRNA differential display PCR (DD-PCR) and rapid amplification of cDNA ends (RACE). To unravel the biological function of CYP86MF gene, the antisense fragment from the CYP86MF gene was transferred into Chinese cabbage pak-choi (B. campestris ssp. chinensis var. communis Tsen et Lee). Out of 22 plants transformed with the antisense gene constructed from the CYP86MF, 20 reached to flowering stage. Morphological investigations showed that the transgenic plants developed the normal floral organ. However, they remained self-infertile, even when artificial self-pollination was performed in the bud stage. Pollen germination test indicated that the pollen from the transgenic line TB-2 could not germinate normally. Further physiological, biochemical and cytological analyses showed that only significant difference was detectable in contents of the endogenous hormones, and a layer of unknown material adhered to the surface of microspore. The present studies thus provided valuable clues for understanding the biological function of the CYP86C subfamily genes. Furthermore, our studies also demonstrate a novel method for obtaining artificial male sterility line of Chinese cabbage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R (2001) CYP83B1, a cytochrome P450 at the metabolic branchpoint in auxin and indole glucosinolate biosynthesis in Arabidopsis thaliana. Plant Cell 13:101–111

    Article  PubMed  CAS  Google Scholar 

  • Bartel B, Fink GE (1994) Differential reglulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proc Natl Acad Sci USA 91:6649–6653

    Google Scholar 

  • Block MD, Debrouwer D, Moens T (1997) The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor Appl Genet 95:125–131

    Article  Google Scholar 

  • Bolwell GP, Bozak K, Zimmerlh A (1994) Plant cytochrome P450. Phytochemistry 37:1491–1506

    Article  PubMed  CAS  Google Scholar 

  • Cao JS, Ye WZ, Zhang M, Zeng GW (2001) Differential display of flower bud mRNA of genic male sterility (GMS) AB line in Chinese cabbage-pak-choi and analysis of differential cDNA fragment. J Zhengjiang Univ (Agric Life Sci) 27:596–600

    Google Scholar 

  • Cao JS, Yu XL, Huang AJ, Xu SY (2000) Enhancement of plant regeneration frequency of in vitro cultured Chinese cabbage. Acta Horticult Sin 27:452–454

    Google Scholar 

  • Chapple C (1998) Molecular genetics analysis of plant cytochrome P450-dependent monooxygenases. Annu Revi Plant Physiol Mol Biol 49:311–343

    Article  CAS  Google Scholar 

  • Cho HJ, Kim S, Kim M, Kim BD (2001) Production of transgenic male sterile tobacco plants with the cDNA encoding a ribosome inactivating protein in Dianthus sinensis L. Mol Cells 11:326–333

    PubMed  CAS  Google Scholar 

  • Donald GJ, Deborah CH, Elizabeth AT, David JK, Katharine RT (2000) Inhibition of Plasmodium falciparum clag9 gene function by antisense RNA. Mol Biochem Parasitol 110:33–41

    Article  PubMed  Google Scholar 

  • Feldmann KA (2001) Cytochrome P450s as genes for crop improvement. Curr Opin Plant Biol 4:162–167

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama K, Ishiguro S, Okada K, Takasaki T and Hinata K (2003) Antisense inhibition of a nuclear gene, BrDAD1, in Brassica causes male sterility that is restorable with jasmonic acid treatment. Mol Breed 11:325–336

    Article  CAS  Google Scholar 

  • Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kitashiba H, Kitazawa E, Kishitani S,Toriyama K (1999) Partial male sterility in transgenic tabaccon carrying an antisense gene for alternative oxidase under the control of a tapetum-specific promoter. Mol Breed 5:209–218

    Article  CAS  Google Scholar 

  • Kinzel B, Hall J, Natt F, Weiler J, Cohen D (2002) Down regulation of Hus1 by antisense oligonucleotides enhances the sensitivity of human lung carcinoma cells to cisplatin. Cancer 94:1808–1814

    Article  PubMed  CAS  Google Scholar 

  • Knoester M, Linthorst HJM, Bol JF, van Loon LC (1997) Modulation of stress-inducible ethylene biosynthesis by sense and antisense gene expression in tobacco. Plant Sci 126:173–183

    Article  CAS  Google Scholar 

  • Lee YH, Chung KH, Kim HU, Jin YM, Kim HI, Park BS (2003) Induction of male sterile cabbage using a tapetum- specific promoter from Brassica campestris L. ssp. pekinensis. Plant Cell Rep 22:268–273

    Article  PubMed  CAS  Google Scholar 

  • Liu ZS, Guan CY, Chen SY (2001) Application and research on mechanism of plant male sterility. Press of Chinese Agriculture, Beijing, 42–87

  • Matsuda N, Tsuchiya T, Kishitani S, Tanaka Y, Toriyama K (1996) Partial male sterility in transgenic tabacco carrying antisense and sense PAL cDNA under the control of a tapetum-specific promoter. Plant Cell Physiol 37:215–222

    CAS  Google Scholar 

  • Mariani C, Beuckeleer MD, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737–741

    Article  CAS  Google Scholar 

  • Mariani C, Gossele V, Beuckeleer MD, Block MD, Goldberg RB, Greef WD, Leemans J (1992) A chimaeric ribonucleaseinhibitor gene restores fertility to male sterile plants. Nature 357:384–387

    Article  CAS  Google Scholar 

  • Mikkelsen MD, Hansen CH, Wittstock U, Hakier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of trytophan to indole-3-acetaldoxime, a precursor in indole glucosinolates and indole-3-acetic acid. J Biol Chem 275:33712–33717

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays in tobacco tissue culture. Physiol Plant 15:473–493

    Article  CAS  Google Scholar 

  • Musgrave ME, Antonovics J, Sidedow JN (1986) Is male-sterility in plants related to lack of cyanide-resistant respiration in tissues? Plant Sci 44:7–11

    Article  CAS  Google Scholar 

  • Nadeau JA, Zhang XS, Li J, O'Neill SD (1996) Ovule development: Identification of stage-specific and tissue-specific cDNAs. Plant Cell 8:213–239

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 36:1–10

    Article  Google Scholar 

  • Sambrook J, Russell DW, Russell D (2000) Molecular cloning: A laboratory manual, 3rd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee Y, Truong MT, Beals TP, Goldberg RB (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  • Sawhney VK, Shukla A (1994) Male sterility in flowering plants: are plant growth substances involved? Am J Bot 81:1640–1647

    Article  Google Scholar 

  • Schuler MA (1996) Plant cytochrome P450 monooxygenases. Crit Rev Plant Sci 15:235–284

    Article  CAS  Google Scholar 

  • Spena A, Estruch JJ, Prinsen E, Nacken W, vanOnckelen H, Sommer H (1992) Anther-specific expression of the rolB gene of Agrobacterium rhizogenes increases IAA content in anthers and alters anther development and whole flower growth. Theor Appl Gen 84:520–527

    Article  Google Scholar 

  • Stahel RA, Zangemeister-Wittke U (2003) Antisense oligonucleotides for cancer therapy-/an overview. Lung Cancer 41:581–588

    Article  Google Scholar 

  • Tamm I, Dorken B, Hartmann G (2001) Antisense therapy in oncology: new hope for an old idea? LANCET 58:489–497

    Article  Google Scholar 

  • Taylor LP (1995) Flavonols: effects on fertility and fecundity. Crop Sci 35:1521–1526

    CAS  Google Scholar 

  • Toshiro I, Elliot MM (2000) Overexpression of the gene encoding a Cytochrome P450, CYP78A9, induces large and seedless fruit in Arabidopsis. Plant Cell 12:1541–1550

    Article  PubMed  Google Scholar 

  • Werck-Reichhart D, Hehn A, Didierjean L (2000) Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci 5:116–123

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Knox RB, Taylor PE, Singh MB (1995) Bcp1, a gene required for male fertility in Arabidopsis. Proc Natl Acad Sciences USA 92:2106–2110

    Google Scholar 

  • Ye JY, Li DY, Shen YG (1995) Effect of hypotonic swelling on photosynthesis in spinach intact choroplasts. Acta Phytophysiol Sin 21:73–79

    Google Scholar 

  • Ye WZ, Cao JS, Xiang X, Zeng GW (2003) Molecular cloning and characterization of the genic male sterility related CYP86MF gene in Chinese cabbage (Brassica campetris L. ssp. chinensis Makino var. communis Tsen et Lee). J Horticult Sci Biotechnol 78:319–323

    CAS  Google Scholar 

  • Ying ZT, Yu X, Davis MJ (1999) New method for obtaining transgenic papaya plants by Agrobacterium -mediated transformation of somatic embryos. Proc Florida State Horticult Soc 112:201–205

    Google Scholar 

  • Yuan XM, Jiang MW, Hu ZZ (1996) Colorimetric determination of flavones in hawthorn and its products. Food Ferment Ind Sin 4:27–32

    Google Scholar 

Download references

Acknowledgements

This research was supported by two grants from the National Nature Science Foundation of China (39670512, 30370975). The authors thank especially Prof. Mingliang Chai, Prof. Weijun Zhou and Prof. Jumin Tu for critical reading of the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Cao.

Additional information

Communicated by K. Toriyama

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J.S., Yu, X.L., Ye, W.Z. et al. Functional analysis of a novel male fertility CYP86MF gene in Chinese cabbage (Brassica campestris L. ssp. chinensis makino). Plant Cell Rep 24, 715–723 (2006). https://doi.org/10.1007/s00299-005-0020-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0020-6

Keywords

Abbreviations

Navigation