Skip to main content
Log in

Pediocin-like bacteriocins: new perspectives on mechanism of action and immunity

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

This review attempts to analyze the mechanism of action and immunity of class IIa bacteriocins. These peptides are promising alternative food preservatives and they have a great potential application in medical sciences. Class IIa bacteriocins act on the cytoplasmic membrane of Gram-positive cells dissipating the transmembrane electrical potential by forming pores. However, their toxicity and immunity mechanism remains elusive. Here we discuss the role of the mannose phosphotransferase system (man-PTS) as the receptor for class IIa bacteriocins and the influence of the membrane composition on the activity of these antimicrobial peptides. A model that is consistent with experimental results obtained by different researchers involves the non-specific binding of the bacteriocin to the negatively charged membrane of target bacteria. This step would facilitate a specific binding to the receptor protein, altering its functionality and forming an independent pore in which the bacteriocin is inserted in the membrane. An immunity protein could specifically recognize and block the pore. Bacteriocins function in bacterial ecosystems and energetic costs associated with their production are also discussed. Theoretical models based on solid experimental evidence are vital to understand bacteriocins mechanism of action and to promote new technological developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acuña L, Picariello G, Sesma F et al (2012) A new hybrid bacteriocin, Ent35-MccV, displays antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria. FEBS Open Bio 2:12–19. doi:10.1016/j.fob.2012.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Barraza DE, Ríos Colombo NS, Galván AE et al (2017) New insights into enterocin CRL35; mechanism of action and immunity revealed by heterologous expression in Escherichia coli. Mol Microbiol. doi:10.1111/mmi.13746

    PubMed  Google Scholar 

  • Bhunia AK, Johnson MC, Ray B, Kalchayanand N (1991) Mode of action of pediocin AcH from Pediococcus acidilactici H on sensitive bacterial strains. J Appl Bacteriol 70:25–33

    Article  CAS  Google Scholar 

  • Bruno ME, Montville TJ (1993) Common mechanistic action of bacteriocins from lactic Acid bacteria. Appl Environ Microbiol 59:3003–3010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chalón MC, Acuña L, Morero RD et al (2012) Membrane-active bacteriocins to control Salmonella in foods: are they the definite hurdle? Food Res Int 45:735–744. doi:10.1016/j.foodres.2011.08.024

    Article  Google Scholar 

  • Chen Y, Ludescher RD, Montville TJ (1997) Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles. Appl Environ Microbiol 63:4770–4777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Ludescher RD, Montville TJ (1998) Influence of lipid composition on pediocin PA-1 binding to phospholipid vesicles. Appl Environ Microbiol 64:3530–3532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chikindas ML, Garcia-Garcera MJ, Driessen AJ et al (1993) Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl Environ Microbiol 59:3577–3584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chikindas ML, Weeks R, Drider D et al (2017) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28. doi:10.1016/j.copbio.2017.07.011

    Article  PubMed  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788. doi:10.1038/nrmicro1273

    Article  CAS  PubMed  Google Scholar 

  • Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105. doi:10.1038/nrmicro2937

    Article  CAS  PubMed  Google Scholar 

  • Dalet K, Briand C, Cenatiempo Y, Héchard Y (2000) The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr Microbiol 41:441–443

    Article  CAS  PubMed  Google Scholar 

  • Dalet K, Cenatiempo Y, Cossart P, Hechard Y (2001) A sigma(54)-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147:3263–3269

    Article  CAS  PubMed  Google Scholar 

  • Diep DB, Håvarstein LS, Nes IF (1995) A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol 18:631–639

    Article  CAS  Google Scholar 

  • Diep DB, Skaugen M, Salehian Z et al (2007) Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci USA 104:2384–2389. doi:10.1073/pnas.0608775104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drider D, Fimland G, Hechard Y et al (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582. doi:10.1128/MMBR.00016-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S (2007) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24:708–734. doi:10.1039/b516237h

    Article  CAS  PubMed  Google Scholar 

  • Fimland G, Eijsink VGH, Nissen-Meyer J (2002) Comparative studies of immunity proteins of pediocin-like bacteriocins. Microbiology (Reading, Engl) 148:3661–3670. doi:10.1099/00221287-148-11-3661

    Article  CAS  Google Scholar 

  • Fimland G, Johnsen L, Dalhus B, Nissen-Meyer J (2005) Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: biosynthesis, structure, and mode of action. J Pept Sci 11:688–696. doi:10.1002/psc.699

    Article  CAS  PubMed  Google Scholar 

  • Fregeau Gallagher NL, Sailer M, Niemczura WP et al (1997) Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria. Biochemistry 36:15062–15072. doi:10.1021/bi971263h

    Article  CAS  PubMed  Google Scholar 

  • Gérard F, Pradel N, Ye C et al (2004) Putative membrane assembly of EtpM-colicin V chimeras. Biochimie 86:283–286. doi:10.1016/j.biochi.2004.04.002

    Article  PubMed  Google Scholar 

  • Haugen HS, Fimland G, Nissen-Meyer J, Kristiansen PE (2005) Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide curvacin A. Biochemistry 44:16149–16157. doi:10.1021/bi051215u

    Article  CAS  PubMed  Google Scholar 

  • Johnsen L, Dalhus B, Leiros I, Nissen-Meyer J (2005a) 1.6-Angstroms crystal structure of EntA-im. A bacterial immunity protein conferring immunity to the antimicrobial activity of the pediocin-like bacteriocin enterocin A. J Biol Chem 280:19045–19050. doi:10.1074/jbc.M501386200

    Article  CAS  PubMed  Google Scholar 

  • Johnsen L, Fimland G, Nissen-Meyer J (2005b) The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J Biol Chem 280:9243–9250. doi:10.1074/jbc.M412712200

    Article  CAS  PubMed  Google Scholar 

  • Kjos M, Nes IF, Diep DB (2009) Class II one-peptide bacteriocins target a phylogenetically defined subgroup of mannose phosphotransferase systems on sensitive cells. Microbiology (Reading, Engl) 155:2949–2961. doi:10.1099/mic.0.030015-0

    Article  CAS  Google Scholar 

  • Kjos M, Salehian Z, Nes IF, Diep DB (2010) An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins. J Bacteriol 192:5906–5913. doi:10.1128/JB.00777-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjos M, Borrero J, Opsata M et al (2011) Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology (Reading, Engl) 157:3256–3267. doi:10.1099/mic.0.052571-0

    Article  CAS  Google Scholar 

  • Kommineni S, Bretl DJ, Lam V et al (2015) Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526:719–722. doi:10.1038/nature15524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masias E, Dupuy FG, da Silva Sanches PR et al (2017) Impairment of the class IIa bacteriocin receptor function and membrane structural changes are associated to enterocin CRL35 high resistance in Listeria monocytogenes. Biochim Biophys Acta. doi:10.1016/j.bbagen.2017.03.014

    PubMed  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. doi:10.1146/annurev.micro.55.1.165

    Article  CAS  PubMed  Google Scholar 

  • Minahk CJ, Farías ME, Sesma F, Morero RD (2000) Effect of enterocin CRL35 on Listeria monocytogenes cell membrane. FEMS Microbiol Lett 192:79–83

    Article  CAS  PubMed  Google Scholar 

  • Moll GN, Konings WN, Driessen AJ (1999) Bacteriocins: mechanism of membrane insertion and pore formation. Antonie Van Leeuwenhoek 76:185–198

    Article  CAS  PubMed  Google Scholar 

  • Nes IF, Diep DB, Håvarstein LS et al (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113–128

    Article  CAS  PubMed  Google Scholar 

  • Nissen-Meyer J, Håvarstein LS, Holo H et al (1993) Association of the lactococcin A immunity factor with the cell membrane: purification and characterization of the immunity factor. J Gen Microbiol 139:1503–1509. doi:10.1099/00221287-139-7-1503

    Article  CAS  PubMed  Google Scholar 

  • Opsata M, Nes IF, Holo H (2010) Class IIa bacteriocin resistance in Enterococcus faecalis V583: the mannose PTS operon mediates global transcriptional responses. BMC Microbiol 10:224. doi:10.1186/1471-2180-10-224

    Article  PubMed  PubMed Central  Google Scholar 

  • Orndorff PE (2016) Use of bacteriophage to target bacterial surface structures required for virulence: a systematic search for antibiotic alternatives. Curr Genet 62:753–757. doi:10.1007/s00294-016-0603-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quadri LE, Sailer M, Terebiznik MR et al (1995) Characterization of the protein conferring immunity to the antimicrobial peptide carnobacteriocin B2 and expression of carnobacteriocins B2 and BM1. J Bacteriol 177:1144–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramnath M, Beukes M, Tamura K, Hastings JW (2000) Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol 66:3098–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramnath M, Arous S, Gravesen A et al (2004) Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis. Microbiology (Reading, Engl) 150:2663–2668. doi:10.1099/mic.0.27002-0

    Article  CAS  Google Scholar 

  • Riley MA, Gordon DM (1999) The ecological role of bacteriocins in bacterial competition. Trends Microbiol 7:129–133

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137. doi:10.1146/annurev.micro.56.012302.161024

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez JM, Martínez MI, Kok J (2002) Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit Rev Food Sci Nutr 42:91–121. doi:10.1080/10408690290825475

    Article  PubMed  Google Scholar 

  • Sassone-Corsi M, Nuccio S-P, Liu H et al (2016) Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540:280–283. doi:10.1038/nature20557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanker E, Federle MJ (2017) Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes (Basel). doi:10.3390/genes8010015

    Google Scholar 

  • Sprules T, Kawulka KE, Vederas JC (2004) NMR solution structure of ImB2, a protein conferring immunity to antimicrobial activity of the type IIa bacteriocin, carnobacteriocin B2. Biochemistry 43:11740–11749. doi:10.1021/bi048854+

    Article  CAS  PubMed  Google Scholar 

  • Stevens KA, Sheldon BW, Klapes NA, Klaenhammer TR (1991) Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria. Appl Environ Microbiol 57:3613–3615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tessema GT, Møretrø T, Kohler A et al (2009) Complex phenotypic and genotypic responses of Listeria monocytogenes strains exposed to the class IIa bacteriocin sakacin P. Appl Environ Microbiol 75:6973–6980. doi:10.1128/AEM.00608-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uteng M, Hauge HH, Markwick PRL et al (2003) Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry 42:11417–11426. doi:10.1021/bi034572i

    Article  CAS  PubMed  Google Scholar 

  • Vadyvaloo V, Hastings JW, van der Merwe MJ, Rautenbach M (2002) Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol 68:5223–5230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadyvaloo V, Arous S, Gravesen A et al (2004) Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology (Reading, Engl) 150:3025–3033. doi:10.1099/mic.0.27059-0

    Article  CAS  Google Scholar 

  • van der Ploeg JR (2005) Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 187:3980–3989. doi:10.1128/JB.187.12.3980-3989.2005

    Article  PubMed  PubMed Central  Google Scholar 

  • Venema K, Kok J, Marugg JD et al (1995) Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1.0: PedB is the immunity protein and PedD is the precursor processing enzyme. Mol Microbiol 17:515–522

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Henz ME, Gallagher NL et al (1999) Solution structure of carnobacteriocin B2 and implications for structure-activity relationships among type IIa bacteriocins from lactic acid bacteria. Biochemistry 38:15438–15447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by Consejo Nacional de Investigaciones Científicas y Técnicas PIP 0779, PIP 0530 and PIP 0906, Agencia Nacional de Promoción Científica y Tecnológica PICT-2012-2998 and PIUNT D548/1 from Universidad Nacional de Tucumán (UNT). N.S.R.C and S.A.N. are recipients of CONICET fellowship. M.C.C. and A.B are career investigators of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Bellomio.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ríos Colombo, N.S., Chalón, M.C., Navarro, S.A. et al. Pediocin-like bacteriocins: new perspectives on mechanism of action and immunity. Curr Genet 64, 345–351 (2018). https://doi.org/10.1007/s00294-017-0757-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-017-0757-9

Keywords

Navigation