Skip to main content
Log in

The evolution of 5S ribosomal RNA genes linked to the rDNA units of fungal species

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

5S ribosomal RNA (rRNA) genes are known to move in and out of various tandemly repeated eukaryotic gene families during evolution. Here, we investigated the organization of 5S rRNA genes linked to the ribosomal DNA (rDNA) units in 147 fungal species using available sequence and genome databanks. Whereas some fungal species have no 5S rRNA genes in their rDNA units, others have one or two 5S rRNA copies linked on the same or the opposite strand. There were at least 13 independent changes during the evolution of fungal species. These include two 5S rRNA genes loss, five 5S rRNA genes inversions and six 5S rRNA genes insertions (including duplications). The lower frequency of 5S rRNA genes loss might be due to the fact that these events are more likely to affect fitness. The maximum time required for 5S rRNA gene organization to change between related species was estimated to be 7.5 millions years based on the sequences of the elongation factor alpha genes of Candida glabrata and Saccharomyces mikatae. This time is much longer than the homogenization time predicted from theoretical and experimental studies and likely reflects the lack of closely related species or strains in our data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Arnheim N (1983) Concerted evolution of multigene families. In: Nei M, Koehn R (eds) Evolution of genes and proteins. Sinauer, Sunderland, pp 38–61

    Google Scholar 

  • Babasaki K, Neda H, Murata H (2007) megB1, a novel macroevolutionary genomic marker of the fungal phylum Basidiomycota. Biosci Biotechnol Biochem 71:1927–1939

    Article  PubMed  CAS  Google Scholar 

  • Bedard JE, Schurko AM, de Cock AW, Klassen GR (2006) Diversity and evolution of 5S rRNA gene family organization in Pythium. Mycol Res 110:86–95

    Article  PubMed  CAS  Google Scholar 

  • Begerow D, Stoll M, Bauer R (2006) A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98:909–916

    Article  Google Scholar 

  • Belkhiri A, Buchko J, Klassen GR (1992) The 5S ribosomal RNA gene in Pythium species: two different genomic locations. Mol Biol Evol 9:1089–1102

    PubMed  CAS  Google Scholar 

  • Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota VIIB systematics and evolution. Springer, Berlin, pp 229–245

    Google Scholar 

  • Cai J, Roberts IN, Collins MD (1996) Phylogenetic relationships among members of the ascomycetous yeast genera Brettanomyces Debaryomyces, Dekkera, and Kluyveromyces deduced by small-subunit rRNA gene sequences. Int J Syst Bacteriol 46:542–549

    Article  PubMed  CAS  Google Scholar 

  • Diezmann S, Cox CJ, Schönian G, Vilgalys RJ, Mitchell TG (2004) Phylogeny and evolution of medical species of Candida and related taxa: a multigenic analysis. J Clin Microbiol 42:5624–5635

    Article  PubMed  CAS  Google Scholar 

  • Dover GA (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117

    Article  PubMed  CAS  Google Scholar 

  • Drouin G, Moniz de Sá M (1995) The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol Biol Evol 12:481–493

    PubMed  CAS  Google Scholar 

  • Drouin G (2000) Expressed retrotransposed 5S rRNA genes in the mouse and rat genomes. Genome 43:213–215

    Article  PubMed  CAS  Google Scholar 

  • Easteal S, Collet CC, Betty DJ (1995) The mammalian molecular clock. Springer & Landes, Austin

    Google Scholar 

  • Fitzpatrick DA, Loque ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99

    Article  PubMed  CAS  Google Scholar 

  • Ganley AR, Kobayashi T (2007) Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res 17:184–191

    Article  PubMed  CAS  Google Scholar 

  • Gaudet G, Julien J, Lafay JF, Brygoo Y (1989) Phylogeny of some Fusarium species, as determined by large-subunit rRNA sequence comparison. Mol Biol Evol 6:227–242

    Google Scholar 

  • Gerbi S (1985) Evolution of ribosomal DNA. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 419–517

    Google Scholar 

  • Glazko GV, Koonin EV, Rogozin IB (2005) Molecular dating: Ape bones agree with chicken entrails. Trends Genet 21:89–92

    Article  PubMed  CAS  Google Scholar 

  • Graur D, Li W-H (2000) Fundamentals of molecular evolution, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Graur D, Martin W (2004) Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet 20:242–247

    Article  CAS  Google Scholar 

  • Guerreiro P, Neves A, Rodrigues-Pousada C (1993) Clusters of 5S rRNAs in the intergenic region of ubiquitin genes in Tetrahymena pyriformis. Biochim Biophys Acta 1216:137–139

    PubMed  CAS  Google Scholar 

  • Hinkle G, Wetterer JK, Schultz TR, Sogin ML (1994) Phylogeny of the Attine ant fungi based on analysis of the small subunit ribosomal RNA gene sequences. Science 266:1695–1697

    Article  PubMed  CAS  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüssler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    Article  PubMed  CAS  Google Scholar 

  • Kasuga T, White TJ, Taylor JW (2002) Estimation of nucleotide substitution rates in Eurotiomycete fungi. Mol Biol Evol 19:2318–2324

    PubMed  CAS  Google Scholar 

  • Kurtzman CP (2000) Four new yeasts in the Pichia anomala clade. Int J Syst Evol Microbiol 50:395–404

    PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res 3:417–432

    Article  PubMed  CAS  Google Scholar 

  • Kyei-Poku G, Gauthier D, Van Frankenhuyzen K (2008) Molecular data and phylogeny of Nosema infecting Lepidopteran forest defoliators in the genera Choristoneura and Malacosoma. J Eukaryot Microbiol 55:51–58

    Article  PubMed  CAS  Google Scholar 

  • Larrivée M, Wellinger RJ (2006) Telomerase- and capping-independent yeast survivors with alternate telomere states. Nat Cell Biol 8:741–747

    Article  PubMed  CAS  Google Scholar 

  • Lévesque CA, de Cock AW (2004) Molecular phylogeny and taxonomy of the genus Pythium. Mycol Res 108:1363–1383

    Article  PubMed  CAS  Google Scholar 

  • Li WH (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36:96–99

    Article  PubMed  CAS  Google Scholar 

  • Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B, Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V, Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J, Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung G-H, Lücking R, Lumbsch T, O’Donnell K, Binder M, Diederich P, Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I, Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R (2004) Assembling the fungal tree of life: progress, classification and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  Google Scholar 

  • Manchado M, Zuasti E, Cross I, Merlo A, Infante C, Rebordinos L (2006) Molecular characterization and chromosomal mapping of the 5S rRNA gene in Solea senegalensis: a new linkage to the U1, U2, and U5 small nuclear RNA genes. Genome 49:79–86

    Article  PubMed  CAS  Google Scholar 

  • Matheny PB, Wang Z, Binder M, Curtis JM, Lim YW, Nilsson RH, Hughes KW, Hofstetter V, Ammirati JF, Schoch CL, Langer E, Langer G, McLaughlin DJ, Wilson AW, Frøslev T, Ge ZW, Kerrigan RW, Slot JC, Yang ZL, Baroni TJ, Fischer M, Hosaka K, Matsuura K, Seidl MT, Vauras J, Hibbett DS (2007) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol Phylogenet Evol 43:430–451

    Article  PubMed  CAS  Google Scholar 

  • Moncalvo JM, Lutzoni F, Rehner S, Johnson J, Vilgalys R (1996) Molecular phylogeny of the Agaricales based on 25S rDNA sequences. Department of Botany, Duke University. Presented as a poster at the Asilomar Fungal Genetics Conference (March 1996). http://www.biology.duke.edu/fungi/mycolab/agarical.htm

  • Nachman MW, Crowell SL (2000) Estimate of the mutation rate per nucleotide in humans. Genetics 156:297–304

    PubMed  CAS  Google Scholar 

  • Nazar RN (1980) A 5.8S rRNA-like sequence in prokaryotic 23S rRNA. FEBS Lett 119:212–214

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86

    Article  PubMed  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Pamilo P, Bianchi NO (1993) Evolution of the Zfx and Zfy, genes: rates and interdependence between the genes. Mol Biol Evol 10:271–281

    PubMed  CAS  Google Scholar 

  • Pelliccia F, Barzotti R, Bucciarelli E, Rocchi A (2001) 5S ribosomal and U1 small nuclear RNA genes: a new linkage type in the genome of a crustacean that has three different tandemly repeated units containing 5S ribosomal DNA sequences. Genome 44:331–335

    Article  PubMed  CAS  Google Scholar 

  • Rubin GM, Sulston JE (1973) Physical linkage of the 5 S cistrons to the 18 S and 28 S ribosomal RNA cistrons in Saccharomyces cerevisiae. J Mol Biol 79:521–530

    Article  PubMed  CAS  Google Scholar 

  • Smith GP (1974) Unequal crossover and the evolution of multigene families. Cold Spring Harbor Symp Quant Biol 38:507–513

    PubMed  CAS  Google Scholar 

  • Souciet J, Aigle M, Artiguenave F, Blandin G, Bolotin-Fukuhara M, Bon E, Brottier P, Casaregola S, de Montigny J, Dujon B, Durrens P, Gaillardin C, Lépingle A, Llorente B, Malpertuy A, Neuvéglise C, Ozier-Kalogéropoulos O, Potier S, Saurin W, Tekaia F, Toffano-Nioche C, Wésolowski-Louvel M, Wincker P, Weissenbach J (2000) Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies. FEBS Lett 487:3–12

    Article  PubMed  Google Scholar 

  • Szostak JW, Wu R (1980) Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature 284:426–430

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thon MR, Royse DJ (1999) Partial β-tubulin gene sequences for evolutionary studies in the Basidiomycotina. Mycologia 91:468–474

    Article  CAS  Google Scholar 

  • Tsui CKM, Daniel HM, Robert V, Meyer W (2008) Re-examining the phylogeny of clinically relevant Candida species and allied genera based on multigene analyses. FEMS Yeast Res 8:651–659

    Article  PubMed  CAS  Google Scholar 

  • Voigt K, Cigelnik E, O’Donnell K (1999) Phylogeny and PCR identification of clinically important zygomycetes based on nuclear ribosomal-DNA sequence data. J Clin Microbiol 37:3957–3964

    PubMed  CAS  Google Scholar 

  • Wolfe KH, Sharp PM, Li WH (1989) Rates of synonymous substitutions in plant nuclear genes. J Mol Evol 29:208–211

    Article  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mary Berbee (Botany Department, University of British Columbia) for her advice and comments on fungal divergence times. We thank the two anonymous reviewers for their thoughtful and constructive comments on a previous version of this manuscript. This work was supported by a Discovery Grant from the National Science and Engineering Research Council of Canada to G. D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Drouin.

Additional information

Communicated by C. Gaillardin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (DOC 254 kb)

Supplementary Table 2 (DOC 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergeron, J., Drouin, G. The evolution of 5S ribosomal RNA genes linked to the rDNA units of fungal species. Curr Genet 54, 123–131 (2008). https://doi.org/10.1007/s00294-008-0201-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-008-0201-2

Keywords

Navigation