Skip to main content
Log in

Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Proteolytic enzymes (EC 3.4) secreted by Trichoderma strains are receiving increasing attention because of their potential implication in the Trichoderma biocontrol abilities. We have used an expressed sequence tag (EST) approach to identify genes encoding extracellular peptidases in T. harzianum CECT 2413 grown under several biocontrol-related conditions. Based on BlastX results and Gene Ontology annotation, a total of 61 (among 3478) unique sequences (unisequences) were predicted to encode enzymes with peptidase activity, three corresponding to secreted peptidases already known from this Trichoderma strain (PAPA, PRA1 and P6281). Further manual screening based on the functional identity and cellular location of the best matches revealed ten unisequences encoding novel extracellular peptidases. We report the characterization of the corresponding genes as well as a potential orthologous gene of the intracellular peptidase PAPB from T. asperellum. In each case, full-length coding sequences were obtained, and deduced proteins were compared at phylogenetic level with peptidases from other organisms. T. harzianum CECT 2413 novel peptidases included six serine endopeptidases (EC 3.4.21) belonging to the families S1, S8 and S53, three aspartic endopeptidases (EC 3.4.23) of the family A1, one metallo-endopeptidase (EC 3.4.24) of the family M35, and one aminopeptidase (EC 3.4.11) of the family M28. Results obtained by Northern blot analyses demonstrated that the genes within a family are differentially regulated in response to different culture conditions, suggesting that they have diverse functional roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Arvas M, Pakula T, Lanthaler K, Saloheimo M, Valkonen M, Suortti T, Robson G, Penttilä M (2006) Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae. BMC Genomics 7:32

    Article  PubMed  CAS  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene ontology: tool for the unification of biology The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Barrett AJ, Rawlings ND, Woessner JF (2004) Handbook of proteolytic enzymes, 2nd edn. Elsevier Academic Press, London

    Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  CAS  Google Scholar 

  • Bertagnolli BL, Dal Soglio FK, Sinclair JB (1996) Extracellular enzyme profiles of the fungal pathogen Rhizoctonia solani isolate 2B-12 and of two antagonists, Bacillus megaterium strain B153-2-2 and Trichoderma harzianum isolate Th008 I Possible correlations with inhibition of growth and biocontrol. Physiol Mol Plant Pathol 48:145–160

    Article  CAS  Google Scholar 

  • Carpenter MA, Stewart A, Ridgway HJ (2005) Identification of novel Trichoderma hamatum genes expressed during mycoparasitism using subtractive hybridisation. FEMS Microbiol Lett 251:105–112

    Article  PubMed  CAS  Google Scholar 

  • Chambergo FS, Bonaccorsi ED, Ferreira AJ, Ramos AS, Ferreira-Junior JR, Abrahao-Neto J, Farah JP, El-Dorry H (2002) Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J Biol Chem 277:13983–13988

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Gotz S, García-Gómez J M, Terol J, Talon M, Robles M (2005) BLAST2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Cortés C, Gutiérrez A, Olmedo V, Inbar J, Chet I, Herrera-Estrella A (1998) The expression of genes involved in parasitism by Trichoderma harzianum is triggered by a diffusible factor. Mol Genet Genomics 260:218–225

    Article  Google Scholar 

  • Delgado-Jarana J, Rincón AM, Benítez T (2002) Aspartyl protease from Trichoderma harzianum CECT 2413: cloning and characterization. Microbiology 148:1305–1315

    PubMed  CAS  Google Scholar 

  • De Marco JL, Felix CR (2002) Characterization of a protease produced by a Trichoderma harzianum isolate which controls cocoa plant witches’ bromm disease. BMC Biochemistry 3:3–9

    Article  PubMed  Google Scholar 

  • Diener SE, Dunn-Coleman N, Foreman P, Houfek TD, Teunissen PJ, van Solingen P, Dankmeyer L, Mitchell TK, Ward M, Dean RA (2004a) Characterization of the protein processing and secretion pathways in a comprehensive set of expressed sequence tags from Trichoderma reesei. FEMS Microbiol Lett 230:275–282

    Article  Google Scholar 

  • Diener SE, Chellappan MK, Mitchell TK, Dunn-Coleman N, Ward M, Dean RA (2004b) Insight into Trichoderma reesei’s genome content, organization and evolution revealed through BAC library characterization. Fung Genet Biol 41:1077–1087

    Article  CAS  Google Scholar 

  • Elad Y, Kapat A (1999) The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol 105:177–189

    Article  CAS  Google Scholar 

  • Flores A, Chet I, Herrera-Estrella A (1997) Improved biocontrol activity of Trichoderma harzianum strains by overexpression of the proteinase encoding gene prb1. Curr Genet 31:30–37

    Article  PubMed  CAS  Google Scholar 

  • Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997

    Article  PubMed  Google Scholar 

  • Freimoser FM, Screen S, Bagga S, Hu G, St Leger RJ (2003) Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149:239–247

    Article  PubMed  CAS  Google Scholar 

  • Geremia RA, Goldman GH, Jacobs D, Ardiles W, Vila SB, Van Montagu M, Herrera-Estrella A (1993) Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Mol Microbiol 8:603–613

    Article  PubMed  CAS  Google Scholar 

  • Hanson LE, Howell CR (2004) Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopahol 94:171–176

    CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  PubMed  CAS  Google Scholar 

  • Hermosa MR, Keck E, Chamorro I, Rubio B, Sanz L, Vizcaíno JA, Grondona I, Monte E (2004) Genetic diversity shown in Trichoderma biocontrol isolates. Mycol Res 108:897–906

    Article  PubMed  CAS  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease 87:4–10

    Google Scholar 

  • Hu G, St. Leger RJ (2004) A phylogenomic approach to reconstructing the diversification of serine proteases in fungi. J Evol Biol 17:1204–1214

    Article  PubMed  CAS  Google Scholar 

  • Keon J, Antoniw J, Rudd J, Skinner W, Hargreaves J, Hammond-Kosack K (2005) Analysis of expressed sequence tags from the wheat leaf blotch pathogen Mycosphaerella graminicola (anamorph Septoria tritici). Fung Genet Biol 42:376–389

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotides sequences. J Mol Evol 2:87–90

    Article  Google Scholar 

  • Liu PG, Yang Q (2005) Identification of genes with a biocontrol function in Trichoderma harzianum mycelium using the expressed sequence tag approach. Res Microbiol 156:416–423

    Article  PubMed  CAS  Google Scholar 

  • Lorito M (1998) Chitinolytic enzymes and their genes. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium enzymes, biological control and commercial applications. Taylor and Francis, London, pp 73–99

    Google Scholar 

  • Mahon P, Bateman A (2000) The PA domain: a protease-associated domain. Protein Sci 9:1930–1934

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235

    PubMed  Google Scholar 

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32

    PubMed  CAS  Google Scholar 

  • Montero M, Sanz L, Rey M, Monte E, Llobell A (2005) BGN163, a novel acidic beta-1,6-glucanase from mycoparasitic fungus Trichoderma harzianum CECT 2413. FEBS J 272:3441–3448

    Article  PubMed  CAS  Google Scholar 

  • Neumann MJ, Dobinson KF (2003) Sequence tag analysis of gene expression during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliae. Fung Genet Biol 38:54–62

    Article  CAS  Google Scholar 

  • Nielsen TH, Deiting U, Sitt M (1997) A β-amylase in potato is induced by storage at low temperature. Plant Physiol 113:503–510

    Article  PubMed  CAS  Google Scholar 

  • Panabières F, Amselem J, Galiana E, Le Berre JY (2005) Gene identification in the oomycete pathogen Phytophthora parasitica during in vitro vegetative growth through expressed sequence tags. Fung Genet Biol 42:611–623

    Article  CAS  Google Scholar 

  • Perona JJ, Hedstrom L, Rutter WJ, Fletterick RJ (1995) Structural origins of substrate discrimination in trypsin and chymotrypsin. Biochemistry 34:1489–1499

    Article  PubMed  CAS  Google Scholar 

  • Pozo MJ, Baek JM, Garcia JM, Kenerley CM (2004) Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genet Biol 41:336–348

    Article  PubMed  CAS  Google Scholar 

  • Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucleic Acids Res 34:D270–D272

    Article  PubMed  CAS  Google Scholar 

  • Rey M, Llobell A, Monte E, Scala F, Lorito M (2004) Trichoderma Genomics. In: Arora K, Khachatourians GG (eds) Applied mycology and biotechnology fungal genomics. Elsevier, Amsterdam, pp 225–248

    Google Scholar 

  • Rone H (1995) Glucose repression in fungi. Trends Genet 11:12–17

    Article  Google Scholar 

  • Ribichich KF, Salem-Izacc SM, Georg RC, Vencio RZ, Navarro LD, Gomes SL (2005) Gene discovery and expression profile analysis through sequencing of expressed sequence tags from different developmental stages of the chytridiomycete Blastocladiella emersonii. Eukaryot Cell 4:455–464

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Srping Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanz L, Montero M, Grondona I, Vizcaíno JA, Llobell A, Hermosa R, Monte E (2004) Cell wall-degrading isoenzyme profiles of Trichoderma biocontrol strains show correlation with rDNA taxonomic species. Curr Genet 46:277–286

    Article  PubMed  CAS  Google Scholar 

  • Seidl V, Huemer B, Seiboth B, Kubicek CP (2005) A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939

    Article  PubMed  CAS  Google Scholar 

  • Steyaert JM, Stewart A, Jaspers MV, Carpenter M, Ridgway HJ (2004) Co-expression of two genes, a chitinase (chit42) and proteinase (prb1) implicated in mycoparasitism by Trichoderma hamatum. Mycologia 96:1245–1252

    CAS  Google Scholar 

  • St Leger RJ, Joshi L, Roberts DW (1997) Adaptation of proteases and carbohydrates of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 143:1983–1990

    Article  PubMed  CAS  Google Scholar 

  • Suárez B, Rey M, Castillo P, Monte E, Llobell A (2004) Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl Microbiol Biotech 65:46–55

    Article  CAS  Google Scholar 

  • Suárez MB, Sanz L, Chamorro MI, Rey M, González FJ, Llobell A, Monte E (2005) Proteomic analysis of secreted proteins from Trichoderma harzianum Identification of a fungal cell wall-induced aspartic protease. Fung Genet Biol 42:924–934

    Article  CAS  Google Scholar 

  • Szekeres A, Kredics L, Antal Z, Kevei F, Manczinger L (2004) Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. FEMS Microbiol Lett 233:215–222

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Peñalva MA (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–790

    PubMed  CAS  Google Scholar 

  • Trail F, Xu JR, San Miguel P, Halgren RG, Kistler HC (2003) Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fung Genet Biol 38:187–197

    Article  Google Scholar 

  • Vazquez-Garcidueñas S, Leal-Morales CA, Herrera-Estrella A (1998) Analysis of the beta-1,3-glucanolytic system of the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 64:1442–1446

    PubMed  Google Scholar 

  • Viterbo A, Harel M, Chet I (2004) Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots. FEMS Microbiol Lett 238:151–158

    PubMed  CAS  Google Scholar 

  • Vizcaíno JA, González FJ, Suárez MB, Redondo J, Heinrich J, Delgado-Jarana J, Hermosa R, Gutiérrez S, Monte E, Llobell A, Rey M (2006) Generation, annotation and analysis of ESTs from Trichoderma harzianum CECT 2413. BMC Genomics 7:193

    Article  PubMed  CAS  Google Scholar 

  • Vizcaíno JA, Redondo J, Suárez MB, Cardoza RE, Hermosa MR, González FJ, Rey M, Monte E (2007) Generation, annotation and analysis of ESTs from Trichoderma harzianum CECT 2413. Appl Microbiol Biotech (in press)

  • Williams J, Clarkson JM, Mills PR, Cooper RM (2003) Saprotrophic and mycoparasitic components of aggressiveness of Trichoderma harzianum groups toward the commercial mushroom Agaricus bisporus. Appl Environ Microbiol 69:4192–4199

    Article  PubMed  CAS  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the important contribution of their colleagues from the TrichoEST consortium to the generation of the EST database. This work was supported in part by the UE-funded TrichoEST project (QLK3-2002-02032), the Spanish projects MEC-INIA-RM03-008-C3-2, MEC/PROFIT-FIT-010000-2004-150, and the Ramón Areces Foundation (Madrid, Spain). We also thank Emma J. Keck for the revision of the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Belén Suárez.

Additional information

Communicated by U. Kück.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suárez, M.B., Vizcaíno, J.A., Llobell, A. et al. Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. Curr Genet 51, 331–342 (2007). https://doi.org/10.1007/s00294-007-0130-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-007-0130-5

Keywords

Navigation