Skip to main content
Log in

Localization and function of SulP, a nuclear-encoded chloroplast sulfate permease in Chlamydomonas reinhardtii

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Recent work [H.-C. Chen et al. (2003) Planta 218:98–106] reported on the genomic, proteomic, phylogenetic and evolutionary aspects of a putative nuclear gene (SulP) encoding a chloroplast sulfate permease in the model green alga Chlamydomonas reinhardtii. In this article, evidence is provided for the envelope localization of the SulP protein and its function in the uptake and assimilation of sulfate by the chloroplast. Localization of the SulP protein in the chloroplast envelope was concluded upon isolation of C. reinhardtii chloroplasts, followed by fractionation into envelope and thylakoid membranes and Western blotting of these fractions with specific polyclonal antibodies raised against the recombinant SulP protein. The function of the SulP protein was probed in antisense transformants of C. reinhardtii having lower expression levels of the SulP gene. Results showed that cellular sulfate uptake capacity was lowered as a consequence of attenuated SulP gene expression in the cell, directly affecting rates of de novo protein biosynthesis in the chloroplast. The antisense transformants exhibited phenotypes of sulfate-deprived cells, displaying slow rates of light-saturated oxygen evolution, low levels of Rubisco in the chloroplast and low steady-state levels of the photosystem-II D1 reaction-center protein. The role of the chloroplast sulfate transport in the uptake and assimilation of sulfate in C. reinhardtii is discussed along with its impact on the repair of photosystem-II from a frequently occurring photo-oxidative damage and potential use for the elucidation of the H2-evolution-related metabolism in this green alga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2a,b
Fig. 3
Fig. 4
Fig. 5 a
Fig. 6a–c
Fig. 7a,b
Fig. 8

Similar content being viewed by others

Abbreviations

Chl :

Chlorophyll

D1 :

Photosystem-II reaction-center protein

LHCII :

Chl a/b light-harvesting complex of PSII

PS :

Photosystem

QRT–PCR :

Quantitative reverse transcription–polymerase chain reaction

RbcL :

Large subunit of Rubisco

RbcS :

Small subunit of Rubisco

Rubisco :

Ribulose 1,5-bisphosphate carboxylase–oxygenase

SulP :

Sulfate permease

References

  • Adir N, Shochat S, Ohad I (1990) Light-dependent D1 protein synthesis and translocation is regulated by reaction center II: reaction center II serves as an acceptor for the D1 precursor. J Biol Chem 265:12563–12568

    CAS  PubMed  Google Scholar 

  • Arnon D (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–5

    CAS  Google Scholar 

  • Bottomley W, Spencer D, Whitfeld PR (1974) Protein synthesis in isolated spinach chloroplasts: comparison of light-driven and ATP-driven synthesis. Arch Biochem Biophys 164:106–117

    CAS  PubMed  Google Scholar 

  • Cao H, Zhang L, Melis A (2001) Bioenergetic and metabolic processes for the survival of sulfur-deprived Dunaliella salina (Chlorophyta). J Appl Phycol 13:25–34

    Article  CAS  Google Scholar 

  • Chen H-C, Yokthongwattana K, Newton AJ, Melis A (2003) SulP, a nuclear gene encoding a putative chloroplast-targeted sulfate permease in Chlamydomonas reinhardtii. Planta 218:98–106

    Article  CAS  PubMed  Google Scholar 

  • Danon A, Mayfield SP (1994) Light-regulated translation of chloroplast messenger RNAs through redox potential. Science 266:1717–1719

    CAS  PubMed  Google Scholar 

  • Davies JP, Yildiz FH, Grossman A (1994) Mutants of Chlamydomonas with aberrant responses to sulfur deprivation. Plant Cell 6:53–63

    Article  CAS  PubMed  Google Scholar 

  • Davies JP, Yildiz FH, Grossman AR (1996) Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 15:2150–9

    CAS  PubMed  Google Scholar 

  • Eaglesham ARJ, Ellis RJ (1974) Protein synthesis in chloroplasts: II Light-driven synthesis of membrane protein by isolated pea chloroplasts Biochim Biophys Acta 335:396–407

    Google Scholar 

  • Ferreira RMB, Teixeira ARN (1992) Sulfur starvation in Lemna leads to degradation of ribulose-bisphosphate carboxylase without plant death. J Biol Chem 267:7253–7257

    CAS  PubMed  Google Scholar 

  • Ghirardi ML, Zhang L, Lee JW, Flynn T Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SM, Clarkson DT, Cambridge M, Lambers H, Hawkesford MJ (1997) SO42− deprivation has an early effect on the content of ribulose-1,5-bisphosphate carboxylase/oxygenase and photosynthesis in young leaves of wheat. Plant Physiol 115:1231–1239

    CAS  PubMed  Google Scholar 

  • Giordano M, Pezzoni V, Hell R (2000) Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. Plant Physiol 124:857–864

    Article  CAS  PubMed  Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 54:1665–1669

    CAS  PubMed  Google Scholar 

  • Grossman A, Takahashi H (2001) Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions Annu Rev Plant Physiol Plant Mol Biol 52:163–210

    Article  CAS  Google Scholar 

  • Guenther JE, Melis A (1990) The physiological significance of photosystem II heterogeneity in chloroplasts. Photosynth Res 23:105–109

    CAS  Google Scholar 

  • Hell R (1997) Molecular physiology of plant sulfur metabolism. Planta 202:138–48

    Article  CAS  PubMed  Google Scholar 

  • Hirai MY, Fujiwara T, Awazuhara M, Kimura T, Noji M, Saito K (2003) Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J 33:651–663

    Article  CAS  PubMed  Google Scholar 

  • Irihimovitch V, Shapira M (2000) Glutathione redox potential modulated by reactive oxygen species regulates translation of Rubisco large subunit in the chloroplast. J Biol Chem 275:16289–16295

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Sato S, Kotani H et al. (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    CAS  PubMed  Google Scholar 

  • Kathir P, LaVoie M, Brazelton WJ, Haas NA, Lefebvre PA, Silflow CD (2003) Molecular map of the Chlamydomonas reinhardtii nuclear genome. Eukaryotic Cell 2:362–379

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Mayfield SP (1997) Protein disulfide isomerase as a regulator of chloroplast translational activation. Science 278:1954–1957

    Article  CAS  PubMed  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232

    CAS  PubMed  Google Scholar 

  • Kohn C, Schumann J (1993) Nucleotide sequence and homology comparison of two genes of the sulfate transport operon from the cyanobacterium Synechocystis sp. PCC6803. Plant Mol Biol 21:409–412

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Laudenbach DE, Grossman A (1991) Characterization and mutagenesis of sulfur-regulated genes in a cyanobacterium: evidence for function in sulfate transport. J Bacteriol 173:2739–2750

    CAS  PubMed  Google Scholar 

  • Leustek T, Martin MN, Bick J-A, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  CAS  PubMed  Google Scholar 

  • Mason CB, Matthews S, Bricker TM, Moroney JV (1991) Simplified procedure for the isolation of intact chloroplasts from Chlamydomonas reinhardtii. Plant Physiol 97:1576–1580

    Google Scholar 

  • Mattoo AK, Edelman M (1987) Intramembrane translocation and posttranslational palmitoylation of the chloroplast 32-kDa herbicide-binding protein. Proc Natl Acad Sci USA 84:1497–1501

    CAS  PubMed  Google Scholar 

  • Melis A (1989) Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size. Phil Trans R Soc Lond Biol Sci 323:397–409

    CAS  Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    Article  PubMed  Google Scholar 

  • Melis A, Brown JS (1980) Stoichiometry of system I and system II reaction centers and of plastoquinone in different photosynthetic membranes. Proc Natl Acad Sci USA 77:4712–4716

    CAS  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production: green algae as a source of energy. Plant Physiol 127:740–748

    Article  CAS  PubMed  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135

    Article  CAS  PubMed  Google Scholar 

  • Mendiola-Morgenthaler L, Eichenberger W, Boschetti A (1985) Isolation of chloroplast envelopes from Chlamydomonas. Lipid and polypeptide composition. Plant Sci 41:97–104

    Article  CAS  Google Scholar 

  • Moroney JV, Somanchi A (1999) How do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation? Plant Physiol 119:9–16

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33:633–650

    Article  CAS  PubMed  Google Scholar 

  • Ohad I, Kyle DJ, Arntzen CJ (1984) Membrane protein damage and repair: removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. J Cell Biol 99:481–485

    Article  CAS  PubMed  Google Scholar 

  • Ohyma K, Fukuzawa H, Kohchi T et al. (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Google Scholar 

  • Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3:188–195

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

  • Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475–486

    Article  CAS  PubMed  Google Scholar 

  • Stevens DR, Rochaix J-D, Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet 251:23–30

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Asanuma W, Saito K (1999) Cloning of an Arabidopsis cDNA encoding a chloroplast localizing sulfate transporter isoform. J Exp Bot 50:1713–1714

    Article  CAS  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–82

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Yamaya T (2003) T-DNA insertion mutagenesis of sulfate transporters in Arabidopsis. In: Davidian J-C, Grill D, de Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Rennenberg H (eds) Sulfur transport and assimilation in plants. Backhus, Leiden, The Netherlands, pp 339–340

  • Vasilikiotis C, Melis A (1994) Photosystem II reaction center damage and repair cycle: chloroplast acclimation strategy to irradiance stress. Proc Natl Acad Sci USA 91:7222–7226

    CAS  PubMed  Google Scholar 

  • Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–39

    Article  CAS  PubMed  Google Scholar 

  • Yildiz FH, Davies JP, Grossman A (1994) Characterization of sulfate transport in Chlamydomonas reinhardtii during sulfur-limited and sulfur-sufficient growth. Plant Physiol 104:981–987

    CAS  PubMed  Google Scholar 

  • Yohn CB, Cohen A, Rosch C, Kuchka MR, Mayfield SP (1998) Translation of the chloroplast psbA mRNA requires the nuclear-encoded poly(A)-binding protein, RB47. J Cell Biol 142:435–442

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis thaliana. Plant J 29:465–473

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Melis A (2002) Probing green algal hydrogen production. Philos Trans R Soc Lond Biol Sci 357:1499–1509

    Article  CAS  Google Scholar 

  • Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga) Planta 214:552–561

    Google Scholar 

Download references

Acknowledgements

The work was supported in part by an USDA-NRI FD-2002-35100-12278-MELI-08/04 grant and in part by a DaimlerChrysler-UC Berkeley R&D contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Melis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HC., Melis, A. Localization and function of SulP, a nuclear-encoded chloroplast sulfate permease in Chlamydomonas reinhardtii. Planta 220, 198–210 (2004). https://doi.org/10.1007/s00425-004-1331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1331-5

Keywords

Navigation