Skip to main content
Log in

A two-step protocol for efficient deletion of genes in the filamentous ascomycete Podospora anserina

  • Technical Note
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Deletion of genes in Podospora anserina via conventional methods is an inefficient and time-consuming process since homologous recombination occurs normally only at low frequency (about 1%). To improve the efficiency of replacement, we adopted the two-step protocol developed for Aspergillus nidulans (Chaveroche et al. in Nucleic Acids Res 28:E97, 2000). As a prerequisite, a vector was generated containing a blasticidin resistance cassette for selection in the Escherichia coli host strain KS272 (pKOBEG) and a phleomycin resistance cassette for selection in P. anserina. A derivative of this vector, into which short (∼250 bp) PCR-generated sequences flanking the gene to be deleted have been integrated, is introduced into the E. coli host strain which contains a cosmid with the gene of interest and long 5′ and 3′ flanking sequences. Subsequently, a cosmid is reisolated from E. coli in which the gene of interest is replaced by the resistance cassette. This construct is used to transform P. anserina. The long stretches flanking the resistance cassette facilitate recombination with homologous sequences in the fungal genome and increase the efficiency of gene deletion up to 100%. The procedure is not dependent on the availability of specific auxotrophic mutant strains and may be applicable to other fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Averbeck NB, Borghouts C, Hamann A, Specke V, Osiewacz HD (2001) Molecular control of copper homeostasis in filamentous fungi: increased expression of a metallothionein gene during aging of Podospora anserina. Mol Gen Genet 264:604–612

    Article  PubMed  CAS  Google Scholar 

  • Calmels S, Parriche M, Durand H, Tiraby G (1991) High efficiency transformation of Tolypocladium geodes conidiospores to phleomycin resistance. Curr Genet 20:309–314

    Article  PubMed  CAS  Google Scholar 

  • Chaveroche M-K, Ghigo J-M, d’Enfert C (2000) A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res 28:E97

    Article  PubMed  CAS  Google Scholar 

  • Contamine V, Zickler D, Picard M (2004) The Podospora rmp1 gene implicated in nucleus-mitochondria cross-talk encodes an essential protein whose subcellular location is developmentally regulated. Genetics 166:135–150

    Article  PubMed  CAS  Google Scholar 

  • Dementhon K, Saupe SJ, Clavé C (2004) Characterization of IDI-4, a bZIP transcription factor inducing autophagy and cell death in the fungus Podospora anserina. Mol Microbiol 53:1625–1640

    Article  PubMed  CAS  Google Scholar 

  • Dufour E, Boulay J, Rincheval V, Sainsard-Chanet A (2000) A causal link between respiration and senescence in Podospora anserina. Proc Natl Acad Sci USA 97:4138–4143

    Article  PubMed  CAS  Google Scholar 

  • Jekosch K, Kück U (2000) Glucose dependent transcriptional expression of the cre1 gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr Genet 37:388–395

    Article  PubMed  CAS  Google Scholar 

  • Kooistra R, Hooykaas PJJ, Steensma HY (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21:781–792

    Article  PubMed  CAS  Google Scholar 

  • Kück U, Pöggeler S (2004) pZHK2, a bi-functional transformation vector, suitable for two step gene targeting. Fungal Genet Newsl 51:4–6

    Google Scholar 

  • Langfelder K, Gattung S, Brakhage AA (2002) A novel method used to delete a new Aspergillus fumigatus ABC transporter-encoding gene. Curr Genet 41:268–274

    Article  PubMed  CAS  Google Scholar 

  • Lecellier G, Silar P (1994) Rapid methods for nucleic acids extraction from Petri dish-grown mycelia. Curr Genet 25:122–123

    Article  PubMed  CAS  Google Scholar 

  • Lorin S, Dufour E, Boulay J, Begel O, Marsy S, Sainsard-Chanet A (2001) Overexpression of the alternative oxidase restores senescence and fertility in a long-lived respiration-deficient mutant of Podospora anserina. Mol Microbiol 42:1259–1267

    Article  PubMed  CAS  Google Scholar 

  • Malagnac F, Lalucque H, Lepère G, Silar P (2004) Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet Biol 41:982–997

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–12253

    Article  PubMed  CAS  Google Scholar 

  • Osiewacz HD (1994) A versatile shuttle cosmid vector for the efficient construction of genomic libraries and for the cloning of fungal genes. Curr Genet 26:87–90

    Article  PubMed  CAS  Google Scholar 

  • Pinan-Lucarré B, Paoletti M, Dementhon K, Coulary-Salin B, Clavé C (2003) Autophagy is induced during cell death by incompatibility and is essential for differentiation in the filamentous fungus Podospora anserina. Mol Microbiol 47:321–333

    Article  PubMed  Google Scholar 

  • Rizet G (1952) Les phénomènes de barrages chez Podospora anserina. I Analyse génétique des barrages entre souches S et s. Rev Cytol Biol Veget 13:51–92

    Google Scholar 

  • Ruprich-Robert G, Zickler D, Berteaux-Lecellier V, Vélot C, Picard M (2002) Lack of mitochondrial citrate synthase discloses a new meiotic checkpoint in a strict aerobe. EMBO J 21:6440–6451

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sellem CH, Lemaire C, Lorin S, Dujardin G, Sainsard-Chanet A (2005) Interaction between the oxa1 and rmp1 genes modulates respiratory complex assembly and life span in Podospora anserina. Genetics 169:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Silar P, Barreau C, Debuchy R, Kicka S, Turcq B, Sainsard-Chanet A, Sellem CH, Billault A, Cattolico L, Duprat S, Weissenbach J (2003) Characterization of the genomic organization of the region bordering the centromere of chromosome V of Podospora anserina by direct sequencing. Fungal Genet Biol 39:250–263

    Article  PubMed  CAS  Google Scholar 

  • Stumpferl SW, Stephan O, Osiewacz HD (2004) Impact of a disruption of a pathway delivering copper to mitochondria on Podospora anserina metabolism and life span. Eukaryotic Cell 3:200–211

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Ukil L, Osmani A, Nahm F, Davies J, De Souza CPC, Dou X, Perez-Balaguer A, Osmani SA (2004) Rapid production of gene replacement constructs and generation of a green fluorescent protein-tagged centromeric marker in Aspergillus nidulans. Eukaryotic Cell 3:1359–1362

    Article  PubMed  CAS  Google Scholar 

  • Yu J-H, Hamari Z, Han K-H, Seo J-A, Reyes-Domínguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge Prof. Dr Christophe d’Enfert (Paris, France) for the possibility to use the E. coli strain KS272 (pKOBEG) and Prof. Dr. Axel Brakhage (Jena, Germany) and Prof. Dr. Ulrich Kück (Bochum, Germany) for helpful hints on the development of the knockout procedure. We also greatly acknowledge the P. anserina sequencing consortium coordinated at Paris, France (http://www.genoscope.cns.fr/externe/English/Projets/Projet_GA/GA.html) for making the P. anserina contigs publicly available. The experimental work is supported by a grant of the European Commission (LSHM-CT-2004-512020) to HDO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Hamann.

Additional information

Communicated by U. Kück

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamann, A., Krause, K., Werner, A. et al. A two-step protocol for efficient deletion of genes in the filamentous ascomycete Podospora anserina . Curr Genet 48, 270–275 (2005). https://doi.org/10.1007/s00294-005-0018-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0018-1

Keywords

Navigation