Skip to main content
Log in

High efficiency transformation of Tolypocladium geodes conidiospores to phleomycin resistance

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

A convenient and efficient transformation system has been developed for the filamentous fungus Tolypocladium geodes. In contrast to most of the commonly described techniques requiring prior preparation of protoplasts or spheroplasts, this method leads to high efficiency transformation of T. geodes conidiospores following moderate lytic enzyme treatment. Competent cells so obtained are still resistant to osmotic pressure and can be stored frozen without loss of viability. The highest transformation frequency (3-5x103 transformants per μg of DNA) was obtained with plasmid pUT737 containing the Sh ble gene conferring phleomycin resistance under the control of a strong promoter isolated from Trichoderma reesei. Southern hybridization revealed multiple integration sites of plasmid DNA into the T. geodes nuclear DNA despite the absence of homology between the transforming DNA and the recipient genome. Instability could not be detected for the phleomycin® phenotype during more than five generations of mitotic growth under non-selective conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin B, Hall RM, Tyler BM (1990) Gene 93:157–162

    Google Scholar 

  • Avalos J, Geever RF, Case ME (1989) Curr Genet 16:369–372

    Google Scholar 

  • Bej AK, Perlin MH (1989) Gene 80:171–176

    Google Scholar 

  • Binninger DM, Skrzynia C, Pukkila PJ, Casselton LA (1987) EMBO J 4:835–840

    Google Scholar 

  • Boel E, Hansen MT, Hjort I, Hoegh I, Fii NP (1984) EMBO J 3:1581–1585

    Google Scholar 

  • Bull JH, Smith DJ, Turner G (1988) Curr Genet 13:377–382

    Google Scholar 

  • Buxton FP, Gwynne DI, Davies RW (1989) Gene 84:329–334

    Google Scholar 

  • Calmels TPG, Martin F, Durand H, Tiraby G (1991) J Biotechnol 17:51–66

    Google Scholar 

  • Cottrelle P, Thiele D, Price VL, Memet S, Micouin JY, Marck C, Buhler JM, Sentenac A, Fromageot P (1985) J Biol Chem 260: 3090–3096

    Google Scholar 

  • Drocourt D, Calmels TPG, Reynes JP, Baron M, Tiraby G (1990) Nucleic Acids Res 18:4009

    Google Scholar 

  • Durand H, Baron M, Calmels T, Tiraby G (1988) In: Aubert JP (ed) Biochemistry and genetics of cellulose degradation. Academic Press, London, pp 135–151

    Google Scholar 

  • Fincham JRS (1989) Microbiol Rev 53:148–170

    Google Scholar 

  • Gatignol A, Durand H, Tiraby G (1988) FEBS Lett 230:171–175

    Google Scholar 

  • Gatignol A, Dassain M, Tiraby G (1990) Gene 91:35–41

    Google Scholar 

  • Glanville N, Durnam DM, Palmiter RD (1981) Nature 292:267–269

    Google Scholar 

  • Glumoff V, Käppeli O, Fiechter A, Reiser J (1989) Gene 84:311–318

    Google Scholar 

  • Herrera-Estrella A, Goldman GH, Van Montagu H (1990) Mol Microbiol 4:839–843

    Google Scholar 

  • Kelly JM, Hynes MJ (1985) EMBO J 4:475–479

    Google Scholar 

  • Kolar M, Punt PJ, Hondel van den CAMJJ, Schwab H (1988) Gene 62:127–134

    Google Scholar 

  • Kozak M (1986) Cell 44:283–292

    Google Scholar 

  • Mandels M, Weber J (1969) Adv Chem 95:391–414

    Google Scholar 

  • Mattern IE, Punt PJ (1988) Fungal Genet Newslett 35:25

    Google Scholar 

  • Mullaney EJ, Hamer JE, Roberti KE, Yelton MM, Timberlake WE (1985) Mol Gen Genet 199:37–45

    Google Scholar 

  • Mulsant P, Gatignol A, Dalens M, Tiraby G (1988) Somat Cell Mol Genet 14:243–252

    Google Scholar 

  • Orbach MJ, Porro EB, Yanofsky C (1986) Mol Cell Biol 6:2452–2461

    Google Scholar 

  • Perez P, Tiraby G, Kallerhoff J, Perret J (1989) Plant Mol Biol 13:365–373

    Google Scholar 

  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, Hondd van den CAMJJ (1987) Gene 56:117–124

    Google Scholar 

  • Rogers SO, Bendich AJ (1988) In: Gelvin SB, Schilperoot RA (eds). Plant molecular biology manual A6. Kluwer Academic Publishers, Dordrecht, pp 1–10

    Google Scholar 

  • Skatrud PL, Queener SW, Carr LG, Fisher DL (1987) Curt Genet 12:337–348

    Google Scholar 

  • Smith M, Leung DW, Gillam S, Astell CR (1979) Cell 16:753–761

    Google Scholar 

  • Suarez T, Esclava AP (1988) Mol Gen Genet 212:120–123

    Google Scholar 

  • Timberlake WE, Marshall MA (1989) Science 244:1313–1317

    Google Scholar 

  • Turgeon BG, Garber RC, Yoder OC (1985) Mol Gen Genet 201:450–453

    Google Scholar 

  • Unkles SE, Campbell EI, Carrez D, Grieve C, Contreras R, Fiers W, Hondel van den CAMJJ, Kinghorn JR (1989) Gene 78:157–166

    Google Scholar 

  • Van Engelenburg F, Smith R, Goosen T, Van den Broek H, Tudzynski P (1989) Appl Microbiol Biotechnol 30:364–370

    Google Scholar 

  • Wang J, Holden DW, Leong SA (1988) Proc Natl Acad Sci USA 85:865–869

    Google Scholar 

  • Ward M, Turner G (1986) Mol Gen Genet 205:331–338

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Esser

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calmels, T., Parriche, M., Durand, H. et al. High efficiency transformation of Tolypocladium geodes conidiospores to phleomycin resistance. Curr Genet 20, 309–314 (1991). https://doi.org/10.1007/BF00318520

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318520

Key words

Navigation