Skip to main content

Advertisement

Log in

Cotton-based health care textile: a mini review

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Cotton and its derivate have been widely employed as a medical and biomedical product in the health care textile area for a long time. The cotton-based products have been used in external applications such as surgical clothing, surgical covers, beddings, and internal applications such as traditional and advanced wound dressing, tissue engineering, drug delivery, surgical area, and dental applications. The product must be accurately qualified in vitro and in vivo due to the final application to be used as an internal biomaterial. Since the nineteenth century, cotton has been used to cover the wounds to warm the wound area as well as act as a barrier to avoid bacterial entrance. Huge products based on cotton and modified cotton gauze have been synthesized to meet different requirements of biomedicals over time to varying medical demands. Cotton has unique properties that make it a favorable candidate for biomaterial production and medical use. These include large surface area, favorable mechanical property, porosity structure, suitable gas permeability, cellulose fibers, etc. Nowadays, researchers are innovating, making modern and ultra-modern new functional cotton base biomaterials incredible. Cotton was the subject of enormous study for physical and chemical modification. The current review aimed to summarize the latest developed cotton base biomedical materials due to the impressive increase in the number of publications regarding cotton and cotton derivatives biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TEMPO:

2,2,6,6-tetramethylpiperidin-1-oxyl

CMCC:

Carboxymethylation of cotton cellulose

ClCH2COOH:

Chloroacetic acid

CST:

Critical solution temperature

DS:

Degree of substitution

DAP:

Diammonium phosphate

DMAC:

Dimethylacetamide

ECM:

Extra-cellular matrix

FTIR:

Fourier transform infrared

hDFCs:

Human dental follicle cells

LCST:

Lower critical solution temperature

NRDD:

Non-responsive drug delivery

OC:

Oxidation of cotton

PBS:

Phosphate-buffered saline

PNIPAAm:

Poly (N-isopropyl acrylamide)

PDEAEMA:

Poly(diethylaminoethyl methacrylate)

PDMAEMA:

Poly(dimethylaminoethyl methacrylate)

PEG:

Poly(ethylene glycol)

PMAA:

Poly(methacrylic acid)

PAA:

Polyacrylic acid

PVA:

Polyvinyl alcohol

SEM:

Scanning electron microscopy

NaOH:

Sodium hydroxide

SPP:

Sodium polyphosphate

SRDD:

Stimulation responsive drug delivery

References

  1. Abbasipour M, Mirjalili M, Khajavi R, Majidi M (2014) Coated cotton gauze with Ag/ZnO/chitosan nanocomposite as a modern wound dressing. J Eng Fibers Fabr 9:124–130. https://doi.org/10.1177/155892501400900114

    Article  CAS  Google Scholar 

  2. Ahmed F, Shaikh I, Hussain T, Ahmad I, Munir S, Zameer M (2014) Developments in health care and medical textiles: a mini review-1. Pak J Nutr 13:780–783. https://doi.org/10.3923/pjn.2014.780.783

    Article  Google Scholar 

  3. Ananth H, Kundapur V, Mohammed HS, Anand M, Amarnath GS, Mankar S (2015) A review on biomaterials in dental implantology. Int J Biomed Sci IJBS 11:113–120

    PubMed  Google Scholar 

  4. Anh HTP, Huang C-M, Huang C-J (2019) Intelligent metal-phenolic metallogels as dressings for infected wounds. Sci Rep 9:11562. https://doi.org/10.1038/s41598-019-47978-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anjum S, Arora A, Alam MS, Gupta B (2016) Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharm 508:92–101. https://doi.org/10.1016/j.ijpharm.2016.05.013

    Article  CAS  PubMed  Google Scholar 

  6. Ao C, Niu Y, Zhang X, He X, Zhang W, Lu C (2017) Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. Int J Biol Macromol 97:568–573. https://doi.org/10.1016/j.ijbiomac.2016.12.091

    Article  CAS  PubMed  Google Scholar 

  7. Aramwit P (2016) Introduction to biomaterials for wound healing. In: Ågren MS (ed) Wound healing biomaterials. Woodhead Publishing, Cambridge, pp 3–38. https://doi.org/10.1016/B978-1-78242-456-7.00001-5

    Chapter  Google Scholar 

  8. Barnea Y, Weiss J, Gur E (2010) A review of the applications of the hydrofiber dressing with silver (Aquacel Ag) in wound care. Therapeut Clin Risk Manag 6:21–27

    CAS  Google Scholar 

  9. Bashari A, Hemmatinejad N, Pourjavadi A (2013) Surface modification of cotton fabric with dual-responsive PNIPAAm/chitosan nano hydrogel. Polym Adv Technol 24:797–806. https://doi.org/10.1002/pat.3145

    Article  CAS  Google Scholar 

  10. Bogle MA, Joseph AK, MacFarlane D (2004) Use of a dental roll coated with flavored viscous lidocaine for nasal mucosal surgery. Dermatol Surg 30:792–793. https://doi.org/10.1111/j.1524-4725.2004.30219.x

    Article  PubMed  Google Scholar 

  11. CellTiter 96® Non-radioactive cell proliferation assay technical bulletin #112. Online at http://www.promega.com/~/media/Files/Resources/Protocols/Technical%20Bulletins/0/CellTiter%2096%20Non-Radioactive%20Cell%20Proliferation%20Assay%20Protocol.pdf

  12. Chang AC, Liu BH, Shao PL, Liao JD (2017) Structure-dependent behaviours of skin layers studied by atomic force microscopy. J Microsc 267:265–271. https://doi.org/10.1111/jmi.12562

    Article  CAS  PubMed  Google Scholar 

  13. Chatterjee S, Chi-leung Hui P (2019) Review of stimuli-responsive polymers in drug delivery and textile application. Molecules. https://doi.org/10.3390/molecules24142547

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chellamani KP, DVaRSVB (2013) Surgical sutures: an overview

  15. Chen J et al (2016) Preparation of a partially carboxymethylated cotton gauze and study of its hemostatic properties. J Mech Behav Biomed Mater 62:407–416. https://doi.org/10.1016/j.jmbbm.2016.04.018

    Article  CAS  PubMed  Google Scholar 

  16. Cheng HN, Biswas A (2011) Chemical modification of cotton-based natural materials: products from carboxymethylation. Carbohyd Polym 84:1004–1010. https://doi.org/10.1016/j.carbpol.2010.12.059

    Article  CAS  Google Scholar 

  17. Chu CC (2013) Types and properties of surgical sutures. In: King MW, Gupta BS, Guidoin R (eds) Biotextiles as medical implants. Woodhead Publishing, Cambridge, pp 231–273. https://doi.org/10.1533/9780857095602.2.232

    Chapter  Google Scholar 

  18. Cowman S et al (2012) An international eDelphi study identifying the research and education priorities in wound management and tissue repair. J Clin Nurs 21:344–353. https://doi.org/10.1111/j.1365-2702.2011.03950.x

    Article  PubMed  Google Scholar 

  19. Cyndi Yag-Howard M (2014) Sutures, needles, and tissue adhesives: a review for dermatologic surgery. Dermatol Surg 40:S3–S15

    Article  PubMed  Google Scholar 

  20. Dai L, Dai H, Yuan Y, Sun X, Zhu Z (2011) Effect of tempo oxidation system on kinetic constants of cotton fibers. BioResources. https://doi.org/10.15376/biores.6.3.2619-2631

    Article  Google Scholar 

  21. Dhivya S, Padma VV, Santhini E (2015) Wound dressings: a review. Biomedicine 5:22–22. https://doi.org/10.7603/s40681-015-0022-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Diegelmann RF (2003) Excessive neutrophils characterize chronic pressure ulcers. Wound Repair Regen 11:490–495. https://doi.org/10.1046/j.1524-475X.2003.11617.x

    Article  PubMed  Google Scholar 

  23. Doh SJ, Lee J, Lim DY, Im JN (2013) Manufacturing and analyses of wet-laid nonwoven consisting of carboxymethyl cellulose fibers. Fibers Polym. https://doi.org/10.1007/s12221-013-2176-y

    Article  Google Scholar 

  24. Du Y, Guo JL, Wang J, Mikos AG, Zhang S (2019) Hierarchically designed bone scaffolds: from internal cues to external stimuli. Biomaterials 218:119334. https://doi.org/10.1016/j.biomaterials.2019.119334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Edwards JV, Howley PS (2007) Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings. J Biomed Mater Res Part A 83:446–454. https://doi.org/10.1002/jbm.a.31171

    Article  CAS  Google Scholar 

  26. Edwards J, Howley P, Yachmenev V, Lambert A, Condon B (2009) Development of a continuous finishing chemistry process for manufacture of a phosphorylated cotton chronic wound dressing. J Ind Textiles. https://doi.org/10.1177/1528083708092012

    Article  Google Scholar 

  27. Edwards JV, Prevost N (2011) Thrombin production and human neutrophil elastase sequestration by modified cellulosic dressings and their electrokinetic analysis. J Funct Biomater 2:391–413. https://doi.org/10.3390/jfb2040391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Edwards JV, Yager DR, Cohen IK, Diegelmann RF, Montante S, Bertoniere N, Bopp AF (2001) Modified cotton gauze dressings that selectively absorb neutrophil elastase activity in solution. Wound Repair Regen 9:50–58. https://doi.org/10.1046/j.1524-475x.2001.00050.x

    Article  CAS  PubMed  Google Scholar 

  29. Filingeri D (2016) Neurophysiology of skin thermal sensations. Compr Physiol 6:1429. https://doi.org/10.1002/cphy.c150040

    Article  PubMed  Google Scholar 

  30. Fulchiero GJ, Ammirati CT, Sengelmann RD (2009) Cotton dental rolls for effective and cost-efficient hemostasis. Dermatol Surg 35:858–859. https://doi.org/10.1111/j.1524-4725.2009.01131.x

    Article  CAS  PubMed  Google Scholar 

  31. Gerhardt LC, Lottenbach R, Rossi RM, Derler S (2013) Tribological investigation of a functional medical textile with lubricating drug-delivery finishing. Colloids Surf B 108:103–109. https://doi.org/10.1016/j.colsurfb.2013.01.055

    Article  CAS  Google Scholar 

  32. Gobbi SJ, Gobbi VJ, Rocha Y (2019) Requirements for selection/development of a biomaterial. Biomed J Sci Tech Res 14(3):1–6 (BJSTR. MS.ID.002554)

    Google Scholar 

  33. Gokarneshan N, Rachel D, Rajendran V, Lavanya B, Ghoshal A (2015) Phosphorylated cotton chronic wound dressing. Springer, Singapore, pp 121–131. https://doi.org/10.1007/978-981-287-508-2_11

    Book  Google Scholar 

  34. Granström M (2009) Cellulose derivatives : synthesis, properties and applications

  35. Gupta B, Agarwal R, Alam MS (2010) Textile-based smart wound dressings. Indian J Fibre Text Res 35:174–187

    CAS  Google Scholar 

  36. Hajimirzababa H, Khajavi R, Mirjalili M, KarimRahimi M (2018) Modified cotton gauze with nano-Ag decorated alginate microcapsules and chitosan loaded with PVP-I. J Textile Inst 109:677–685. https://doi.org/10.1080/00405000.2017.1365398

    Article  CAS  Google Scholar 

  37. Hashemikia S, Hemmatinejad N, Ahmadi E, Montazer M (2016) Antibacterial and anti-inflammatory drug delivery properties on cotton fabric using betamethasone-loaded mesoporous silica particles stabilized with chitosan and silicone softener. Drug Delivery 23:2946–2955. https://doi.org/10.3109/10717544.2015.1132795

    Article  CAS  PubMed  Google Scholar 

  38. Hashemikia S, Hemmatinejad N, Ahmadi E, Montazer M (2016) A novel cotton fabric with anti-bacterial and drug delivery properties using SBA-15-NH2/polysiloxane hybrid containing tetracycline. Mater Sci Eng C 59:429–437. https://doi.org/10.1016/j.msec.2015.09.092

    Article  CAS  Google Scholar 

  39. He X, Cheng L, Zhang X, Xiao Q, Zhang W, Lu C (2015) Tissue engineering scaffolds electrospun from cotton cellulose. Carbohyd Polym 115:485–493. https://doi.org/10.1016/j.carbpol.2014.08.114

    Article  CAS  Google Scholar 

  40. Hindocha N, Manhem F, Backryd E, Bagesund M (2019) Ice versus lidocaine 5% gel for topical anaesthesia of oral mucosa: a randomized cross-over study. BMC Anesthesiol 19:227. https://doi.org/10.1186/s12871-019-0902-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173. https://doi.org/10.1016/j.watres.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  42. Hossain SMZ, Luckham RE, McFadden MJ, Brennan JD (2009) Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal Chem 81:9055–9064. https://doi.org/10.1021/ac901714h

    Article  CAS  PubMed  Google Scholar 

  43. Hosseini Ravandi SA, Valizadeh M (2011) Properties of fibers and fabrics that contribute to human comfort. In: Song G (ed) Improving comfort in clothing. Woodhead Publishing, Cambridge, pp 61–78. https://doi.org/10.1533/9780857090645.1.61

    Chapter  Google Scholar 

  44. Hsieh Y-L (2007) Chemical structure and properties of cotton. Elsevier, Amsterdam, pp 3–34. https://doi.org/10.1533/9781845692483.1.3

    Book  Google Scholar 

  45. Irfan M, Perero S, Miola M, Maina G, Ferri A, Ferraris M, Balagna C (2017) Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique. Cellulose 24:2331–2345. https://doi.org/10.1007/s10570-017-1232-y

    Article  CAS  Google Scholar 

  46. Jayasuriya NSS, Weerapperuma ID, Amarasinghe M (2017) The use of an iced cotton bud as an effective pre-cooling method for palatal anaesthesia: a technical note Singapore. Dent J 38:17–19. https://doi.org/10.1016/j.sdj.2017.07.001

    Article  Google Scholar 

  47. Jeong B, Kibbey MR, Birnbaum JC, Won Y-Y, Gutowska A (2000) Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA. Macromolecules 33:8317–8322. https://doi.org/10.1021/ma000638v

    Article  CAS  Google Scholar 

  48. Joseph B, George A, Gopi S, Kalarikkal N, Thomas S (2017) Polymer sutures for simultaneous wound healing and drug delivery: a review. Int J Pharmaceut 524:454–466. https://doi.org/10.1016/j.ijpharm.2017.03.041

    Article  CAS  Google Scholar 

  49. Kanikireddy V, Varaprasad K, Jayaramudu T, Karthikeyan C, Sadiku R (2020) Carboxymethyl cellulose-based materials for infection control and wound healing: a review. Int J Biol Macromol 164:963–975. https://doi.org/10.1016/j.ijbiomac.2020.07.160

    Article  CAS  PubMed  Google Scholar 

  50. Kittinaovarat S, Hengprapakron N, Janvikul W (2012) Comparative multifunctional properties of partially carboxymethylated cotton gauze treated by the exhaustion or pad-dry-cure methods. Carbohyd Polym 87:16–23. https://doi.org/10.1016/j.carbpol.2011.08.072

    Article  CAS  Google Scholar 

  51. Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep 93:1–49. https://doi.org/10.1016/j.mser.2015.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  52. Koh J (2011) Dyeing of cellulosic fibres. In: Clark M (ed) Handbook of textile and industrial dyeing, vol 2. Woodhead Publishing, Cambridge, pp 129–146. https://doi.org/10.1533/9780857094919.1.129

    Chapter  Google Scholar 

  53. Kong F, Hu YF (2012) Biomolecule immobilization techniques for bioactive paper fabrication. Anal Bioanal Chem 403:7–13. https://doi.org/10.1007/s00216-012-5821-1

    Article  CAS  PubMed  Google Scholar 

  54. Kulinets I (2015) Biomaterials and their applications in medicine. In: Amato SF, Ezzell RM (eds) Regulatory affairs for biomaterials and medical devices. Woodhead Publishing, Cambridge, pp 1–10. https://doi.org/10.1533/9780857099204.1

    Chapter  Google Scholar 

  55. Kutsenko LI, Bochek AM, Vlasova EN, Volchek BZ (2005) Synthesis of carboxymethyl cellulose based on short fibers and lignified part of flax pedicels (boon). Russ J Appl Chem 78:2014–2018. https://doi.org/10.1007/s11167-006-0021-4

    Article  CAS  Google Scholar 

  56. Leff DR, Nortley M, Dang V, Bhutiani RP (2007) The effect of local cooling on pain perception during infiltration of local anaesthetic agents, a prospective randomised controlled trial. Anaesthesia 62:677–682. https://doi.org/10.1111/j.1365-2044.2007.05056.x

    Article  CAS  PubMed  Google Scholar 

  57. Li G, Li Y, Chen G, He J, Han Y, Wang X, Kaplan DL (2015) Silk-based biomaterials in biomedical textiles and fiber-based implants. Adv Healthcare Mater 4:1134–1151. https://doi.org/10.1002/adhm.201500002

    Article  CAS  Google Scholar 

  58. Lloyd L, Kennedy JF, Methacanon P, Paterson M, Knill C (1998) Carbohydrate polymers as wound management aid. Carbohyd Polym 37:315–322. https://doi.org/10.1016/S0144-8617(98)00077-0

    Article  CAS  Google Scholar 

  59. Lumbreras-Aguayo A, Meléndez-Ortiz HI, Puente-Urbina B, Alvarado-Canché C, Ledezma A, Romero-García J, Betancourt-Galindo R (2019) Poly(methacrylic acid)-modified medical cotton gauzes with antimicrobial and drug delivery properties for their use as wound dressings. Carbohyd Polym 205:203–210. https://doi.org/10.1016/j.carbpol.2018.10.015

    Article  CAS  Google Scholar 

  60. Marković D, Korica M, Kostić M, Radovanović Ž, Šaponjić Z, Mitrić M, Radetić M (2018) In situ synthesis of Cu/Cu2O nanoparticles on the TEMPO oxidized cotton fabrics. Cellulose 25:829–841. https://doi.org/10.1007/s10570-017-1566-5

    Article  CAS  Google Scholar 

  61. Mecnika V, Hoerr M, Krievins I, Jockenhoevel S, Gries T (2015) Technical Embroidery for smart textiles: review. Mater Sci Text Cloth Technol. https://doi.org/10.7250/mstct.2014.009

    Article  Google Scholar 

  62. Milanovic J, Schiehser S, Potthast A, Kostic M (2020) Stability of TEMPO-oxidized cotton fibers during natural aging. Carbohyd Polym 230:115587. https://doi.org/10.1016/j.carbpol.2019.115587

    Article  CAS  Google Scholar 

  63. Mostafa WZ, Hegazy RA (2015) Vitamin D and the skin: focus on a complex relationship: a review. J Adv Res 6:793–804. https://doi.org/10.1016/j.jare.2014.01.011

    Article  CAS  PubMed  Google Scholar 

  64. Mostafalu P et al (2017) A textile dressing for temporal and dosage controlled drug delivery. Adv Funct Mater 27:1702399. https://doi.org/10.1002/adfm.201702399

    Article  CAS  Google Scholar 

  65. Myo T et al (2021) Genome-wide identification of the BASS gene family in four Gossypium species and functional characterization of GhBASSs against salt stress. Sci Rep 11:11342. https://doi.org/10.1038/s41598-021-90740-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nguyen AV, Soulika AM (2019) The dynamics of the skin’s immune system. Int J Mol Sci. https://doi.org/10.3390/ijms20081811

    Article  PubMed  PubMed Central  Google Scholar 

  67. Nix A, Paull CA, Colgrave M (2017) Flavonoid profile of the cotton plant Gossypium hirsutum: a review. Plants 6:43. https://doi.org/10.3390/plants6040043

    Article  CAS  PubMed Central  Google Scholar 

  68. Ou K, Wu X, Wang B, Meng C, Dong X, He J (2017) Controlled in situ graft polymerization of DMAEMA onto cotton surface via SI-ARGET ATRP for low-adherent wound dressings. Cellulose 24:5211–5224. https://doi.org/10.1007/s10570-017-1449-9

    Article  CAS  Google Scholar 

  69. Ovington LG (2007) Advances in wound dressings. Clin Dermatol 25:33–38. https://doi.org/10.1016/j.clindermatol.2006.09.003

    Article  PubMed  Google Scholar 

  70. Parikh DV, Fink T, Rajasekharan K, Sachinvala ND, Sawhney APS, Calamari TA, Parikh AD (2005) Antimicrobial silver/sodium carboxymethyl cotton dressings for burn wounds. Text Res J 75:134–138. https://doi.org/10.1177/004051750507500208

    Article  CAS  Google Scholar 

  71. Patel NR, Gohil P (2012) A review on biomaterials: scope applications and human anatomy significance. Int J Emerg Technol Adv Eng 2:91–101

    Google Scholar 

  72. Petrulyte S, Petrulis D (2011) Modern textiles and biomaterials for healthcare. In: Bartels VT (ed) Handbook of medical textiles. Woodhead Publishing, Cambridge, pp 1–35. https://doi.org/10.1533/9780857093691.1.3

    Chapter  Google Scholar 

  73. Praskalo J, Kostic M, Potthast A, Popov G, Pejic B, Skundric P (2009) Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers. Carbohyd Polym 77:791–798. https://doi.org/10.1016/j.carbpol.2009.02.028

    Article  CAS  Google Scholar 

  74. Rashid MHO et al (2021) Genome-wide quantitative trait loci mapping on Verticillium wilt resistance in 300 chromosome segment substitution lines from Gossypium hirsutum × Gossypium barbadense. G3 (Bethesda). https://doi.org/10.1093/g3journal/jkab027

    Article  Google Scholar 

  75. Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75. https://doi.org/10.1146/annurev.bioeng.6.040803.140027

    Article  CAS  PubMed  Google Scholar 

  76. Romanovsky AA (2014) Skin temperature: its role in thermoregulation. Acta Physiol (Oxford, England) 210:498–507. https://doi.org/10.1111/apha.12231

    Article  CAS  Google Scholar 

  77. Sajid MS, Craciunas L, Sains P, Singh KK, Baig MK (2013) Use of antibacterial sutures for skin closure in controlling surgical site infections: a systematic review of published randomized, controlled trials. Gastroenterol Rep 1:42–50. https://doi.org/10.1093/gastro/got003

    Article  Google Scholar 

  78. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511. https://doi.org/10.1016/j.biotechadv.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  79. Schiphorst J, van den Broek M, de Koning T, Murphy JN, Schenning APHJ, Esteves ACC (2016) Dual light and temperature responsive cotton fabric functionalized with a surface-grafted spiropyran–NIPAAm-hydrogel. J Mater Chem A 4:8676–8681. https://doi.org/10.1039/C6TA00161K

    Article  Google Scholar 

  80. Sell S et al (2007) Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polym Int 56:1349–1360. https://doi.org/10.1002/pi.2344

    Article  CAS  Google Scholar 

  81. Semnani D, Afrashi M, Alihosseini F, Dehghan P, Maherolnaghsh M (2017) Investigating the performance of drug delivery system of fluconazole made of nano-micro fibers coated on cotton/polyester fabric. J Mater Sci Mater Med 28:175. https://doi.org/10.1007/s10856-017-5957-9

    Article  CAS  PubMed  Google Scholar 

  82. Shahriari Khalaji M, Lugoloobi I (2020) Biomedical application of cotton and its derivatives. In: Wang H, Memon H (eds) Cotton science and processing technology: gene, ginning, garment and green recycling. Springer Singapore, Singapore, pp 393–416. https://doi.org/10.1007/978-981-15-9169-3_16

    Chapter  Google Scholar 

  83. Shahriari-Khalaji M et al (2021) Functionalization of aminoalkylsilane-grafted bacterial nanocellulose with ZnO-NPs-doped pullulan electrospun nanofibers for multifunctional wound dressing. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.1c00444

    Article  PubMed  Google Scholar 

  84. Shahriari-Khalaji M, Hong S, Hu G, Ji Y, Hong FF (2020) Bacterial nanocellulose-enhanced alginate double-network hydrogels cross-linked with six metal cations for antibacterial wound dressing. Polymers 12:2683

    Article  CAS  PubMed Central  Google Scholar 

  85. Shimamoto T (2011) Polyurethane sheet: a potential substitute of surgical cotton gauze. J Cardiothorac Surg 6:26. https://doi.org/10.1186/1749-8090-6-26

    Article  PubMed  PubMed Central  Google Scholar 

  86. SiriwanK (2019) Antibacterial and physical properties of silver chloride-coated partially carboxymethylated cotton gauze

  87. Uzun M, Anand SC, Shah T (2013) In vitro characterisation and evaluation of different types of wound dressing materials. J Biomed Eng Technol 1:1–7

    Google Scholar 

  88. Uzun M (2017) A review of wound management materials

  89. Venkatrajah B, Malathy VV, Elayarajah B, Rajendran R, Rammohan R (2013) Synthesis of carboxymethyl chitosan and coating on wound dressing gauze for wound healing. Pak J Biol Sci 16:1438–1448. https://doi.org/10.3923/pjbs.2013.1438.1448

    Article  CAS  PubMed  Google Scholar 

  90. Vytrasova J, Tylsova A, Brozkova I, Cervenka L, Pejchalova M, Havelka P (2008) Antimicrobial effect of oxidized cellulose salts. J Ind Microbiol Biotechnol 35:1247. https://doi.org/10.1007/s10295-008-0421-y

    Article  CAS  PubMed  Google Scholar 

  91. Wang Y et al (2019) Chitosan-bound carboxymethylated cotton fabric and its application as wound dressing. Carbohyd Polym 221:202–208. https://doi.org/10.1016/j.carbpol.2019.05.082

    Article  CAS  Google Scholar 

  92. Wang Y et al (2020) Facile fabrication of carboxymethyl chitosan/paraffin coated carboxymethylated cotton fabric with asymmetric wettability for hemostatic wound dressing. Cellulose. https://doi.org/10.1007/s10570-020-02969-2

    Article  PubMed  Google Scholar 

  93. Wang B, Wu X, Li J, Hao X, Lin J, Cheng D, Lu Y (2016) Thermosensitive behavior and antibacterial activity of cotton fabric modified with a chitosan-poly(N-isopropylacrylamide) interpenetrating polymer network. Hydrogel Polym. https://doi.org/10.3390/polym8040110

    Article  Google Scholar 

  94. Wasif A, Laga S (2009) Use of nano silver as an antimicrobial agent for cotton. Autex Res J 9:5–13

    Google Scholar 

  95. Wiegand C, Abel M, Hipler U-C, Elsner P (2019) Effect of non-adhering dressings on promotion of fibroblast proliferation and wound healing in vitro. Sci Rep 9:4320. https://doi.org/10.1038/s41598-019-40921-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu Y, He J, Cheng W, Gu H, Guo Z, Gao S, Huang Y (2012) Oxidized regenerated cellulose-based hemostat with microscopically gradient structure. Carbohyd Polym 88:1023–1032. https://doi.org/10.1016/j.carbpol.2012.01.058

    Article  CAS  Google Scholar 

  97. Xu T, Wang W, Bian X, Wang X, Wang X, Luo JK, Dong S (2015) High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape. Sci Rep 5:12997. https://doi.org/10.1038/srep12997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yoon YN, Im JN, Doh SJ (2013) Study on the effects of reaction conditions on carboxymethyl cellulose nonwoven manufactured by wet-laid process. Fibers Polym 14:1012–1018. https://doi.org/10.1007/s12221-013-1012-8

    Article  CAS  Google Scholar 

  99. Yuan H, Chen L, Hong FF (2020) A Biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound healing. ACS Appl Mater Interfaces 12:3382–3392. https://doi.org/10.1021/acsami.9b17732

    Article  CAS  PubMed  Google Scholar 

  100. Zahran MK, Ahmed HB, El-Rafie MH (2014) Surface modification of cotton fabrics for antibacterial application by coating with AgNPs-alginate composite. Carbohydr Polym 108:145–152. https://doi.org/10.1016/j.carbpol.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  101. Zhao J, Tang Y, Liu Y, Cui L, Xi X, Zhang N, Zhu P (2015) Design carboxymethyl cotton knitted fabrics for wound dressing applications: Solvent effects. Mater Des 87:238–244. https://doi.org/10.1016/j.matdes.2015.07.124

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Nozhat.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahriari-Khalaji, M., Alassod, A. & Nozhat, Z. Cotton-based health care textile: a mini review. Polym. Bull. 79, 10409–10432 (2022). https://doi.org/10.1007/s00289-021-04015-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04015-y

Keywords

Navigation