Skip to main content

Abstract

Nowadays, textile products are being used in several sectors for different purposes beyond imagination. Among these, a very important and emerging domain is medical and healthcare domain. Biopolymers, such as alginate, chitosan, cellulose, gelatin, and collagen, are polymers of natural origin produced by living organisms. They are known to be highly biocompatible and biodegradable. Current studies reported that biopolymers exhibit various health beneficial properties such as antimicrobial, anti-inflammatory, hemostatic, cell proliferative, and antioxidant activities. So biopolymers could be used in the production of medical and paramedical textile devices, with drug delivery property, in the form of fibers, nanofibers, nonwoven, fabrics, sponges, nanoparticles and thin films. In addition, thank to its wound healing properties, biopolymers could be employed in the treatment of soft tissue infections. Biomaterials are able to slow down, then stop the bleeding of recent wounds by activating platelet agglutination. They could also promote the regeneration of tissue cells like muscles, skin, and nerves. Moreover, biopolymers-based nonwoven textile wound dressings can be used drug delivery carriers for wound healing. This paper highlights the structure and characteristics of natural biopolymers. The recent research advances and trends of biomass-derived materials and their derivatives in healthcare and medical textile devices for promotion of wound healing, tissue regeneration, and drug delivery in soft tissue diseases are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. King, M. W., Gupta, B. S., Guidoin, R.: Biotextiles as Medical Implants, Elsevier, Amsterdam, Netherlands, 2017.

    Google Scholar 

  2. Petros, S., Tesfaye, T., Ayele, M.: A Review on Gelatin Based Hydrogels for Medical Textile Applications. Journal of Engineering (2020). ID 8866582. https://doi.org/10.1155/2020/8866582.

  3. Sumithra, M.: Development of medical textile product using chitosan incorporated herbal extract (Aristolochia bracteolate). Int. J. Pharm. Life Sci. 9(3), 5748–5754 (2018).

    Google Scholar 

  4. Akshay Kumar, K. P., Zare, E. N., Torres-Mendieta, R., Waclawek, S., Makvandi, P., Cernik, M.: Electrospun fibers based on botanical, seaweed, microbial, and animal sourced biomacromolecules and their multidimensional applications. Int. J. Biol. Macromol. 171, 130–149 (2021).

    Google Scholar 

  5. Li, D., Wang, Y., Huang, W., Gong, H.: Biomass-derived fiber materials for biomedical applications. Front. Mater. 10, 1058050 (2023).

    Google Scholar 

  6. Zhao, W., Liu, W., Li, J., Lin, X., Wang, Y.: Preparation of animal polysaccharides nanofibers by electrospinning and their potential biomedical applications. J. Biomed. Mater. Res. Part A 103, 807–818 (2015).

    Google Scholar 

  7. Alminderej, F.M., Ammar, C., El-Ghoul, Y.: Functionalization, characterization and microbiological performance of new biocompatible cellulosic dressing grafted chitosan and Suaeda fruticose polysaccharide extract. Cellulose 28, 9821–9835 (2021).

    Google Scholar 

  8. Jahandideh, A., Ashkani, M., Moini, N.: Biopolymers in textile industries. In Sabu Thomas, Sreeraj Gopi, Augustine Amalraj Editor(s), Biopolymers and their Industrial Applications, Chapter 8, pp. 193–218, Elsevier (2021).

    Google Scholar 

  9. Joyce, K., Fabra, G.T., Bozkurt, Y. et al.: Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Sig Transduct Target Ther. 6, 122 (2021).

    Google Scholar 

  10. Elamri, A., Zdiri, K., Hamdaoui, M., Harzallah, O.: Chitosan: A biopolymer for textile processes and products. Textile Research Journal. 93(5–6), 1456–1484 (2023).

    Google Scholar 

  11. Elamri, A., Zdiri, K., Bouzir, D., Hamdaoui M.: Use of Chitosan as Antimicrobial, Antiviral and Antipollution Agent in Textile Finishing. Vlakna a Textil 29(3), 51–70 (2022).

    Google Scholar 

  12. Ahmad, S. I., Ahmad, R., Khan, M. S., Kant, R., Shahid, S., Gautam, L., et al.: Chitin and its derivatives: Structural properties and biomedical applications. Int. J. Biol. Macromol. 164, 526–539 (2020).

    Google Scholar 

  13. Saltz, A., Kandalam, U.: Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: A review. J. Biomed. Mater. Res. A 104, 1276–1284 (2016).

    Google Scholar 

  14. Hecht, H.; Srebnik, S.: Structural Characterization of Sodium Alginate and Calcium Alginate. Biomacromolecules 17, 2160–2167 (2016).

    Google Scholar 

  15. Wróblewska-Krepsztul J., Rydzkowski T., Michalska-Pożoga I., Thakur V.K.: Biopolymers for Biomedical and Pharmaceutical Applications: Recent Advances and Overview of Alginate Electrospinning. Nanomaterials (Basel) 9(3), 404 (2019).

    Google Scholar 

  16. Tan, G., Wang, L., Pan, W., Chen, K.: Polysaccharide Electrospun Nanofibers for Wound Healing Applications. Int J Nanomedicine 17, 3913–3931 (2022).

    Google Scholar 

  17. Castro, K.C., Campos, M.G.N., Mei, L.H.I.: Hyaluronic acid electrospinning: challenges, applications in wound dressings and new perspectives. Int J Biol Macromol. 173, 251–266 (2021).

    Google Scholar 

  18. Frenkel, J.S.: The role of hyaluronan in wound healing. Int Wound J 11, 159–163 (2014).

    Google Scholar 

  19. Maia, J., Evangelista, M.B., Gil, H., Ferreira, L.: Dextran-based materials for biomedical applications. Res. Signpost 37661, 31–53 (2014).

    Google Scholar 

  20. Samrot, A.V., Sathiyasree, M., Rahim, S.B.A., et al.: Scaffold Using Chitosan, Agarose, Cellulose, Dextran and Protein for Tissue Engineering-A Review. Polymers (Basel) 15(6), 1525 (2023).

    Google Scholar 

  21. Chattopadhyay, S., Raines, R.T.: Review collagen-based biomaterials for wound healing: Collagen-Based Biomaterials. Biopolymers 101, 821–833 (2014).

    Google Scholar 

  22. Ricard-Blum, S.: The Collagen Family. Cold Spring Harb Perspect Biol 3, a004978–a004978 (2011).

    Google Scholar 

  23. Tonndorf, R., Aibibu, D., Cherif, C.: Collagen multifilament spinning. Mater Sci Eng C Mater Biol Appl. 106, 110105 (2020).

    Google Scholar 

  24. Wang, Z., Zhang, Y., Zhang, J., Huang, L., Liu, J., Li, Y., Zhang, G., Kundu, S.C., Wang, L.: Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel. Sci. Rep. 4, 7064 (2014).

    Google Scholar 

  25. Kasoju, N. Bora, U. Silk fibroin in tissue engineering. Adv. Healthcare Mater. 1, 319 (2012).

    Google Scholar 

  26. Gil, E.S., Panilaitis, B., Bellas, E., Kaplan, D. L. Functionalized silk biomaterials for wound healing Adv. Healthcare Mater. 2, 206 (2013).

    Google Scholar 

  27. Zhang, W., Chen, L., Chen, et al. Silk Fibroin Biomaterial Shows Safe and Effective Wound Healing in Animal Models and a Randomized Controlled Clinical Trial. Adv. Healthcare Mater. 6, 1700121 (2017).

    Google Scholar 

  28. Fearing, B.V., Van Dyke, M.E.: In vitro response of macrophage polarization to a keratin biomaterial. Acta Biomater. 10, 3136–3144 (2014).

    Google Scholar 

  29. Yao, C.-H., Lee, C.Y., Huang, C.H., Chen, Y.S., Chen, K.Y.: Novel bilayer wound dressing based on electrospun gelatin/keratin nanofibrous mats for skin wound repair. Mater. Sci. Eng. C 79, 533–540 (2017).

    Google Scholar 

  30. Zarei, M., Tanideh, N., Zare, S., Aslani, F.S., Koohi-Hosseinabadi, O., Rowshanghias, A., Pourjavaheri, F., Mehryar, P., Muthuraj, R.: Electrospun poly(3-hydroxybutyrate)/chicken feather-derived keratin scaffolds: Fabrication, in vitro and in vivo biocompatibility evaluation. J. Biomater. Appl. 34, 741–752 (2020).

    Google Scholar 

  31. Akhmetova, A., Heinz, A.: Electrospinning Proteins for Wound Healing Purposes: Opportunities and Challenges. Pharmaceutics 13, 4 (2021).

    Google Scholar 

  32. Parham, S., Kharazi, A.Z., Bakhsheshi-Rad, H.R., Kharaziha, M., Ismail, A.F., Sharif, S., Razzaghi, M., RamaKrishna, S. and Berto, F.: Antimicrobial Synthetic and Natural Polymeric Nanofibers as Wound Dressing: A Review. Adv. Eng. Mater. 24, 2101460 (2022).

    Google Scholar 

  33. Hong, Y., Zhu, X., Wang, P., Fu, H., Deng, C., Cui, L., Wang, Q., Fan, X.: Tyrosinase-Mediated Construction of a Silk Fibroin/Elastin Nanofiber Bioscaffold. Appl Biochem Biotechnol. 178(7), 1363–1376 (2016).

    Google Scholar 

  34. Chong, C., Wang, Y., Fathi, A., Parungao, R., Maitz, P.K., Li, Z.: Skin wound repair: Results of a pre-clinical study to evaluate electropsun collagen-elastin-PCL scaffolds as dermal substitutes. Burns. 45(7), 1639–1648 (2019).

    Google Scholar 

  35. Mendes, A.C., Stephansen, K., Chronakis, I.S.: Electrospinning of food proteins and polysaccharides. Food Hydrocoll. 68, 53–68 (2017).

    Google Scholar 

  36. Wsoo, M.A., Shahir, S., Mohd Bohari, S.P., Nayan, N.H.M., Razak, S.I.A.: A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective. Carbohydr. Res. 491, 107978 (2020).

    Google Scholar 

  37. Poshina, D., Otsuka, I.: Electrospun Polysaccharidic Textiles for Biomedical Applications. Textiles 1, 152–169 (2021).

    Google Scholar 

  38. Chee, B.S., Nugent, M.: Electrospun natural polysaccharide for biomedical application. In Natural Polysaccharides in Drug Delivery and Biomedical Applications, Hasnain, M.S., Nayak, A.K., Eds., Chapter 26-pp. 589–615, Academic Press: Cambridge, MA, USA (2019).

    Google Scholar 

  39. Mostafalu, P., Kiaee, G., Giatsidis, et al.: A textile dressing for temporal and dosage controlled drug delivery. Adv. Funct. Mater. 27(41), 1702399 (2017).

    Google Scholar 

  40. Bakhsheshi-Rad, H. R., Ismail, A. F., Aziz, M., Akbari, M., Hadisi, Z., Omidi, M., et al.: Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment. Int. J. Biol. Macromol. 149, 513–521 (2020).

    Google Scholar 

  41. Simoes, D., Miguel, S. P., Ribeiro,M. P., Coutinho, P.,Mendonca, A. G., Correia, I. J.: Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm. 127, 130–141(2018).

    Google Scholar 

  42. Yuan, M., Dai, F., Li, D., Fan, Y., Xiang, W., Tao, F., et al.: Lysozyme/collagen multilayers layer-by-layer deposited nanofibers with enhanced biocompatibility and antibacterial activity. Mater Sci. Eng. C Mater Biol. Appl. 112, 110868 (2020).

    Google Scholar 

  43. Varaprasad, K., Jayaramudu, T., Kanikireddy, V., Toro, C., Sadiku, E.R.: Alginate-based composite materials for wound dressing application: A mini review. Carbohydr Polym. 15(236), 116025 (2020).

    Google Scholar 

  44. Shalumon, K.T., Anulekha, K.H., Girish, C.M., Prasanth, R., Nair, S.V., Jayakumar, R.: Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr. Polym. 80, 413–419 (2010).

    Google Scholar 

  45. Kang, Y.M., Lee, B.N., Ko, J.H., Kim, G.H., Kang, K.N., Kim, D.Y., Kim, J.H., Park, Y.H., Chun, H.J., Kim, C.H.: In vivo biocompatibility study of electrospun chitosan microfiber for tissue engineering. Int. J. Mol. Sci. 11, 4140–4148 (2010).

    Google Scholar 

  46. Zhang, X., Wang, C., Liao, M., Dai, L., Tang, Y., Zhang, H., Coates, P., Sefat, F., Zheng, L., Song, J.: Aligned electrospun cellulose scaffolds coated with rhBMP for both in vitro and in vivo bone tissue engineering. Carbohydr. Polym. 213, 27–38 (2019).

    Google Scholar 

  47. Zhao, X., Zhou, L., Li, Q., Zou, Q., Du, C.: Biomimetic mineralization of carboxymethyl chitosan nanofibers with improved osteogenic activity in vitro and in vivo. Carbohydr. Polym. 195, 225–234 (2018).

    Google Scholar 

  48. Zha, F., Chen, W., Hao, L., Wu, C., Lu, M., Zhang, L., Yu, D.: Electrospun cellulose-based conductive polymer nanofibrous mats: Composite scaffolds and their influence on cell behavior with electrical stimulation for nerve tissue engineering. Soft Matter 16, 6591–6598 (2020).

    Google Scholar 

  49. Joy, J., Pereira, J., Aid-Launais, R., Pavon-Djavid, G., Ray, A.R., Letourneur, D., Meddahi-Pellé, A., Gupta, B.: Gelatin-Oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. Int. J. Biol. Macromol. 107, 1922–1935 (2018).

    Google Scholar 

  50. Zhang, K., Fan, L., Yan, Z., Yu, Q., Mo, X.: Electrospun biomimic nanofibrous scaffolds of silk fibroin/hyaluronic acid for tissue engineering. J. Biomater. Sci. Polym. Ed. 23, 1185–1198 (2012).

    Google Scholar 

  51. Soni, B.: Cellulose-Based Graft Copolymers, Thakur, V.K. Eds, Taylor and Francis, London (2015).

    Google Scholar 

  52. Rostamitabar, M., Abdelgawad, A.M., Jockenhoevel, S. and Ghazanfari, S.: Drug-Eluting Medical Textiles: From Fiber Production and Textile Fabrication to Drug Loading and Delivery. Macromol. Biosci. 21, 2100021 (2021).

    Google Scholar 

  53. Tungprapa, S., Jangchud, I., and Supaphol, P.: Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polymer 48 (17), 5030–5041 (2007).

    Google Scholar 

  54. Chen, Y., Qiu, Y., Chen, W., and Wei, Q.: Electrospun thymol-loaded porous cellulose acetate fibers with potential biomedical applications. Mater Sci. Eng. C Mater Biol. Appl. 109, 110536 (2020).

    Google Scholar 

  55. Oprea, M., and Voicu, S. I.: Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr. Polym. 247, 116683 (2020).

    Google Scholar 

  56. Hassabo, A., Zayed, M., Bakr, M., Othman, H.: The Utilisation of Gelatin Biopolymer in Textile Wet Processing. Journal of Textiles, Coloration and Polymer Science 19(2), 125–136 (2022).

    Google Scholar 

  57. Soares, R.M.D., Siqueira, N.M., Prabhakaram, M.P., Ramakrishna, S.: Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater. Sci. Eng. C-Mater. Biol. Appl. 92, 969–982 (2018).

    Google Scholar 

  58. Troy, E., Tilbury, M.A., Power, A.M., Wall, J.G.: Nature-Based Biomaterials and Their Application in Biomedicine. Polymers 13, 3321 (2021).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Elamri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elamri, A., Zdiri, K., Hamdaoui, M. (2024). Application of Biopolymers in Medical Textiles: Myriad of Opportunities. In: Abdessalem, S.B., Hamdaoui, M., Baffoun, A., Elamri, A. (eds) Proceedings of the Second International Conference of Innovative Textiles and Developed Materials-ITDM’2; 05-06 May 2023; Tunisia. ITDM 2023. Springer, Singapore. https://doi.org/10.1007/978-981-99-7950-9_15

Download citation

Publish with us

Policies and ethics