Skip to main content
Log in

Synthesis, characterization, and swelling behaviors of sodium carboxymethyl cellulose-g-poly(acrylic acid)/semi-coke superabsorbent

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel multi-functional superabsorbent polymer (SAP) of carboxymethyl cellulose sodium grafted polyacrylic acid/semi-coke (CMC-g-PAA/SC) was firstly prepared by grafting acrylic acid (AA) onto the carboxymethyl cellulose sodium (CMC) using N,N′-methylene-bis-acrylamide (MBA) as cross-linker, ammonium persulfate (APS) as initiator, and the semi-coke (SC) as inorganic component. The SC is the by-product of coal dry distillation, contains 70% of kaolinite and a certain amount of carbon species and humus, which all have the positive role for the soil and the crop. The FTIR characterization verified that the SAP had been polymerized successfully and the SC incorporated into the polymeric matrix evenly. The SEM revealed that the roughness of the SAP increased significantly with the rise of SC content. The TGA analysis proved that the addition of SC could effectively improve thermal stability. At the same time, the effects of pH sensitive, salt concentration, cation type and reswelling ability on the water absorbency were systematically investigated. The results indicated that the swelling of SAP was insensitive in the wide pH range of in 4–12, and maximum water absorbencies with about 420.8 g/g and 64.8 g/g in distilled water and 0.9 wt% NaCl solution were reached as 10 wt% of SC content introducing. Moreover, the SAP also had the better water retention capacity and reusability whatever the SC content. The effect of salt revealed that cations with higher positive charge gave a more obvious effect for the swelling behavior. In view of the above properties, it can be concluded that CMC-g-PAA/SC may have significant potential for agricultural and horticultural application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Feki A, Hamdi M, Jaballi I, Zghal S, Nasri M, Amara IB (2020) Conception and characterization of a multi-sensitive composite chitosan-red marine alga-polysaccharide hydrogels for insulin controlled-release. Carbohyd Polym 236:116046. https://doi.org/10.1016/j.carbpol.2020.116046

    Article  CAS  Google Scholar 

  2. Ahmad S, Ahmad M, Manzoor K, Purwar R, Ikram S (2019) A review on latest innovations in natural gums based hydrogels: Preparations & applications. Inter J Biol Macromol 136:870–890. https://doi.org/10.1016/j.ijbiomac.2019.06.113

    Article  CAS  Google Scholar 

  3. Yang YD, Hu H (2018) Application of SAP spacer fabrics as exuding wound dressing. Polymers 10:210. https://doi.org/10.3390/polym10020210

    Article  CAS  PubMed Central  Google Scholar 

  4. Hajikhani M, Khanghahi MM, Shahrousvand M, Mohammadi-Rovshandeh J, Babaei A, Khademi SM (2019) Intelligent SAPs based on a xanthan gum/poly (acrylic acid) semi-interpenetrating polymer network for application in drug delivery systems. Int J Biol Macromol 139:509–520. https://doi.org/10.1016/j.ijbiomac.2019.07.221

    Article  CAS  PubMed  Google Scholar 

  5. Shoukat H, Pervaiz F, Noreen S, Nawaz M, Qaiser R, Anwar M (2020) Fabrication and evaluation studies of novel polyvinylpyrrolidone and 2-acrylamido-2-methylpropane sulphonic acid-based crosslinked matrices for controlled release of acyclovir. Polym Bull 77:1869–1891. https://doi.org/10.1007/s00289-019-02837-5

    Article  CAS  Google Scholar 

  6. Ashkani M, Bouhendi H, Kabiri K, Rostami MR (2019) Synthesis of poly (2-acrylamido-2-methyl propane sulfonic acid) with high water absorbency and absorption under load (AUL) as concrete grade superabsorbent and its performance. Constr Build Mater 206:540–551. https://doi.org/10.1016/j.conbuildmat.2019.02.070

    Article  CAS  Google Scholar 

  7. Rehman TU, Bibi S, Khan M, Ali I, Shah LA, Khan A, Ateeq M (2019) Fabrication of stable superabsorbent hydrogels for successful removal of crystal violet from waste water. RSC Adv 9:40051–40061. https://doi.org/10.1039/c9ra08079a

  8. Calcagnile P, Sibillano T, Giannini C, Sannino A, Demitri C (2019) Biodegradable poly(lactic acid)/cellulose-based superabsorbent hydrogel composite material as water and fertilizer reservoir in agricultural applications. J Appl Polym Sci 136:47546. https://doi.org/10.1002/app.47546

    Article  CAS  Google Scholar 

  9. Stanley N, Mahanty B (2019) Preparation and characterization of biogenic CaCO3-reinforced polyvinyl alcohol-alginate hydrogel as controlled-release urea formulation. Polym Bull 77:529–540. https://doi.org/10.1007/s00289-019-02763-6

    Article  CAS  Google Scholar 

  10. Ha J, Kim M, Lee W, Lee H, Han C, Koh WG, Ryu DY (2018) Direct measurement of crosslinked surface layer in superabsorbent poly (acrylic acid). Mater Lett 228:33–36. https://doi.org/10.1016/j.matlet.2018.05.079

    Article  CAS  Google Scholar 

  11. Gao JD, Yang Q, Ran F, Ma GF, Lei ZQ (2016) Preparation and properties of novel eco-friendly superabsorbent composites based on raw wheat bran and clays. Appl Clay Sci 132:739–747. https://doi.org/10.1016/j.clay.2016.08.021

    Article  CAS  Google Scholar 

  12. Chaudhuri SD, Mandal A, Dey A, Chakrabarty D (2020) Tuning the swelling and rheological attributes of bentonite clay modified starch grafted polyacrylic acid based hydrogel. Appl Clay Sci 185:105405. https://doi.org/10.1016/j.ijbiomac.2019.07.221

    Article  CAS  Google Scholar 

  13. Yilmaz E, Kaya GG, Deveci H (2018) Preparation and characterization of ph-sensitive semi-interpenetrating network hybrid hydrogels with sodium humate and kaolin. Appl Clay Sci 162:311–316. https://doi.org/10.1016/j.clay.2018.06.032

    Article  CAS  Google Scholar 

  14. Zhu H, Yao X (2013) Synthesis and characterization of poly(acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid)/kaolin superabsorbent composite. J Macromol Sci A 50(2):175–184. https://doi.org/10.1080/10601325.2013.741891

    Article  CAS  Google Scholar 

  15. Li S, Chen G (2020) Agricultural waste-derived superabsorbent hydrogels: preparation, performance, and socioeconomic impacts. J Clean Prod 251:119669. https://doi.org/10.1016/j.jclepro.2019.119669

    Article  CAS  Google Scholar 

  16. Zhang JP, Zhang FS (2018) A new approach for blending waste plastics processing: superabsorbent resin synthesis. J Clean Prod 197:501–510. https://doi.org/10.1016/j.jclepro.2018.06.222

    Article  CAS  Google Scholar 

  17. Zhang JP, Zhang FS (2018) Recycling waste polyethylene film for amphoteric superabsorbent resin synthesis. Chem Eng J 331:169–176. https://doi.org/10.1016/j.cej.2017.08.058

    Article  CAS  Google Scholar 

  18. Bidgoli H, Zamani A, Jeihanipour A, Taherzadeh MJ (2014) Preparation of carboxymethyl cellulose superabsorbents from waste textiles. Fiber Polym 15:431–436. https://doi.org/10.1007/s12221-014-0431-5

    Article  CAS  Google Scholar 

  19. Teli MD, Mallick A (2018) Utilization of waste sorghum grain for producing superabsorbent for personal care products. J Polym Environ 26:1393–1404. https://doi.org/10.1007/s10924-017-1044-z

    Article  CAS  Google Scholar 

  20. Witono JR, Noordergraaf IW, Heeres HJ, Janssen LPBM (2014) Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid. Carbohyd Polym 103:325–332. https://doi.org/10.1016/j.carbpol.2013.12.056

    Article  CAS  Google Scholar 

  21. Lu YS, Xu J, Wang WB, Wang TT, Zong L, Wang AQ (2020) Synthesis of iron red hybrid pigments from oil shale semi-coke waste. Adv Powder Technol 31:2276–2284. https://doi.org/10.1016/j.apt.2020.03.020

    Article  CAS  Google Scholar 

  22. Li XG, Wang D, Liu QF, Komarneni S (2019) A comparative study of synthetic tubular kaolinite nanoscrolls and natural halloysite nanotubes. Appl Clay Sci 168:421–427. https://doi.org/10.1016/j.clay.2018.12.014

    Article  CAS  Google Scholar 

  23. Wan T, Huang R, Zhao Q, Xiong L, Luo L, Tian X, Cai G (2013) Synthesis and swelling properties of corn stalk-composite superabsorbent. J Appl Polym Sci 130:698–703. https://doi.org/10.1002/app.39219

    Article  CAS  Google Scholar 

  24. Yang HY, Tong DS, Dong YX, Ren LB, Fang K, Zhou CH, Yu WH (2020) Kaolinite: a natural and stable catalyst for depolymerization of cellulose to reducing sugars in water. Appl Clay Sci 188:105512. https://doi.org/10.1016/j.clay.2020.105512

    Article  CAS  Google Scholar 

  25. Xl Yu, Wang Z, Liu JJ, Mei H, Yong DL, Li JB (2019) Preparation, swelling behaviors and fertilizer-release properties of sodium humate modified superabsorbent resin. Mater Today Commun 19:124–130. https://doi.org/10.1016/j.mtcomm.2018.12.015

    Article  CAS  Google Scholar 

  26. Wang YS, Zhu YF, Liu Y, Wang AQ (2020) Fabrication of Eco-Friendly Superabsorbent Composites Based on Waste Semicoke. Polymers 12:2347. https://doi.org/10.3390/polym12102347

  27. Liu HP, Liang WX, Qin H, Wang Q (2016) Thermal behavior of co-combustion of oil shale semi-coke with torrefied cornstalk. Appl Therm Eng 109:653–662. https://doi.org/10.1016/j.applthermaleng.2016.08.084

    Article  CAS  Google Scholar 

  28. Seki Y, Altinisik A, Demircioglu B, Tetik C (2014) Carboxymethylcellulose (CMC)–hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization. Cellulose 21:1689–1698. https://doi.org/10.1007/s10570-014-0204-8

    Article  CAS  Google Scholar 

  29. Velempini T, Pillay K, Mbianda XY, Arotiba OA (2018) Carboxymethyl cellulose thiol-imprinted polymers: synthesis, characterization and selective hg(ii) adsorption. J Environ Sci 79:280–296. https://doi.org/10.1016/j.jes.2018.11.022

    Article  Google Scholar 

  30. Cheng S, Liu XM, Zhen JH, Lei ZQ (2019) Preparation of superabsorbent resin with fast water absorption rate based on hydroxymethyl cellulose sodium and its application. Carbohyd Polym 225:115214. https://doi.org/10.1016/j.carbpol.2019.115214

    Article  CAS  Google Scholar 

  31. Wang ZM, Ning AM, Xie PH, Gao GQ, Xie LX, Li X, Song AD (2017) Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide. Carbohyd Polym 157:48–56. https://doi.org/10.1016/j.carbpol.2016.09.070

    Article  CAS  Google Scholar 

  32. Dai HJ, Huang HH (2017) Enhanced swelling and responsive properties of pineapple Peel Carboxymethyl cellulose-g-poly(acrylic acidco-acrylamide) superabsorbent hydrogel by the introduction of Carclazyte. J Agric Food Chem 65:565–574. https://doi.org/10.1021/acs.jafc.6b04899

    Article  CAS  PubMed  Google Scholar 

  33. Salleh KM, Zakaria S, Sajab MS, Gan S, Kaco H (2019) Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and sodium carboxymethylcellulose. Int J Biol Macromol 131:50–59. https://doi.org/10.1016/j.ijbiomac.2019.03.028

    Article  CAS  PubMed  Google Scholar 

  34. Jeong D, Kim C, Kim Y, Jung S (2020) Dual crosslinked carboxymethyl cellulose/polyacrylamide interpenetrating hydrogels with highly enhanced mechanical strength and superabsorbent properties. Eur Polym J 127:109586. https://doi.org/10.1016/j.eurpolymj.2020.109586

    Article  CAS  Google Scholar 

  35. Chen JF, Zhang WY, Li X (2015) Preparation and characterization of a novel superabsorbent of konjac glucomannanpoly (acrylic acid) with trimethylolpropane trimethacrylate cross-linker. RSC Adv 5:3841–38423. https://doi.org/10.1039/c5ra04522c

    Article  Google Scholar 

  36. Fang SX, Wang GJ, Li PC, Xing RG, Liu S, Qin YK, Yu HH, Chen XL, Li KC (2018) Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. Int J Biol Macromol 115:754–761. https://doi.org/10.1016/j.ijbiomac.2018.04.072

    Article  CAS  PubMed  Google Scholar 

  37. Adair A, Kaesaman A, Klinpituksa P (2017) Superabsorbent materials derived from hydroxyethyl cellulose and bentonite: Preparation, characterization and swelling capacities. Polym Test 64:321–329. https://doi.org/10.1016/j.polymertesting.2017.10.018

    Article  CAS  Google Scholar 

  38. Xu XH, Bai B, Ding CX, Wang HL, Suo YR (2015) Synthesis and properties of an ecofriendly superabsorbent composite by grafting the Poly(acrylic acid) onto the surface of Dopamine-coated Sea Buckthorn branches. Ind Eng Chem Res 54:3268–3278. https://doi.org/10.1021/acs.iecr.5b00092

    Article  CAS  Google Scholar 

  39. Lalita Singh AP, Sharma RK (2017) Selective sorption of Fe(II) ions over Cu(II) and Cr(VI) ions by cross-linked graft copolymers of chitosan with acrylic acid and binary vinyl monomer mixtures. Int J Biol Macromol 105:1202–1212. https://doi.org/10.1016/j.ijbiomac.2017.07.163

    Article  CAS  Google Scholar 

  40. Behrouzi M, Moghadam PN (2018) Synthesis of a new superabsorbent copolymer based on acrylic acid grafted onto carboxymethyl tragacanth. Carbohyd Polym 202:227–235. https://doi.org/10.1016/j.carbpol.2018.08.094

    Article  CAS  Google Scholar 

  41. Shi XN, Wang WB, Wang AQ (2013) pH-responsive sodium alginate-based superporous hydrogel generated by an anionic surfactant micelle templating. Carbohyd Polym 94:449–455. https://doi.org/10.1016/j.colsurfb.2011.07.002

    Article  CAS  Google Scholar 

  42. Wang WB, Wang AQ (2009) Preparation, characterization and properties of superabsorbent nanocomposites based on natural guar gum and modified rectorite. Carbohyd Polym 77:891–897. https://doi/https://doi.org/10.1016/j.carbpol.2009.03.012

  43. Ma YL, Lv L, Guo YR, Fu YJ, Shao J, Wu TT et al (2017) Porous lignin based poly (acrylic acid)/organo-montmorillonitenanocomposites: swelling behaviors and rapid removal of Pb (II) ions. Polymer 128:12–23. https://doi.org/10.1016/j.polymer.2017.09.009

  44. Anil I, Gunday ST, Alagha O, Bozkurt A (2019) Synthesis, characterization, and swelling behaviors of Poly(acrylic acid-co-acrylamide)/Pozzolan superabsorbent polymers. J Polym Environ 27:1086–1095. https://doi.org/10.1007/s10924-019-01415-0

    Article  CAS  Google Scholar 

  45. Luo MT, Huang C, Li HL, Guo HJ, Chen XF, Xiong L, Chen XD (2019) Bacterial cellulose based superabsorbent production: a promising example for high value-added utilization of clay and biology resources. Carbohyd Polym 208:421–430. https://doi.org/10.1016/j.carbpol.2018.12.084

    Article  CAS  Google Scholar 

  46. Gharekhania H, Olada A, Mirmohsenia A, Bybordib A (2017) Superabsorbent hydrogel made of NaAlg-g-poly(AA-co-AAm) and ricehusk ash: synthesis, characterization, and swelling kinetic studies. Carbohyd Polym 168:1–13. https://doi.org/10.1016/j.carbpol.2017.03.047

    Article  CAS  Google Scholar 

  47. Liu J, Li Q, Su Y, Yue QY, Gao BY (2014) Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel. Carbohyd Polym 107:232–240. https://doi.org/10.1016/j.carbpol.2014.02.073

    Article  CAS  Google Scholar 

  48. Xu SF, Yin YY, Wang YL, Li X, Hu ZY, Wang R (2020) Amphoteric superabsorbent polymer based on waste collagen as loading media and safer release systems for herbicide 2, 4-D. J Appl Polym Sci 137:48480. https://doi.org/10.1002/app.48480

    Article  CAS  Google Scholar 

  49. Fang SX, Wang GJ, Xing RG, Chen XL, Liu S, Qin YK, Li KC, Wang XQ, Li RF, Li PC (2019) Synthesis of superabsorbent polymers based on chitosan derivative graft acrylic acid-co-acrylamide and its property testing. Int J Biol Macromol 132:575–584. https://doi.org/10.1016/j.ijbiomac.2019.03.176

    Article  CAS  PubMed  Google Scholar 

  50. Sand A, Vyas A (2020) Superabsorbent polymer based on guar gum-graft-acrylamide: synthesis and characterization. J Polym Res 27:1–10. https://doi.org/10.1007/s10965-019-1951-x

    Article  CAS  Google Scholar 

  51. Aissaoui AE, Afif AE (2017) Non-Fickian mass transfer in swelling polymeric non-porous membranes. J Membrane Sci 543:172–183. https://doi.org/10.1016/j.memsci.2017.08.035

    Article  CAS  Google Scholar 

  52. Lan GH, Zhang M, Liu YQ, Qiu HY, Xue SS, Zhang TL, Xu QX (2019) Synthesis and swelling behavior of super-absorbent soluble starch-g-poly(AM-co-NaAMC14S) through graft copolymerization and hydrolysis. Starch-Starke 71:1800272. https://doi.org/10.1002/star.201800272

    Article  CAS  Google Scholar 

  53. Kong WJ, Li Q, Liu J, Li XD, Zhao LW, Su Y, Yue QY, Gao BY (2016) Adsorption behavior and mechanism of heavy metal ions by chicken feather protein-based semi-interpenetrating polymer networks super absorbent resin. RSC Adv 6:83234–83243. https://doi.org/10.1039/C6RA18180E

    Article  CAS  Google Scholar 

  54. Zhang MY, Cheng ZQ, Zhao TQ, Liu MZ, Hu MJ, Li JF (2014) Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran-poly(acrylic acid) superabsorbent hydrogel. J Agric Food Chem 62:8867–8874. https://doi.org/10.1021/jf5021279

    Article  CAS  PubMed  Google Scholar 

  55. Wang WS, Yan SQ, Zhang AP, Yang ZL (2019) Preparation and properties of novel corn straw cellulose-based superabsorbent with water-retaining and slow-release functions. J Appl Polym Sci 137:48951. https://doi.org/10.1002/app.48951

    Article  CAS  Google Scholar 

  56. Liu XW, Luan S, Li W (2019) Utilization of waste hemicelluloses lye for superabsorbent hydrogel synthesis. Int J Biol Macromol 132:954–962. https://doi.org/10.1016/j.ijbiomac.2019.04.041

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Major Projects of the Natural Science Foundation of Gansu, China (18JR4RA001), the Top Ten Science and Technology Innovation Projects in Lanzhou (2019-3-1), and Youth Innovation Promotion Association CAS (2016370, 2020418).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengjun Quan or Aiqin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhu, Y., Mu, B. et al. Synthesis, characterization, and swelling behaviors of sodium carboxymethyl cellulose-g-poly(acrylic acid)/semi-coke superabsorbent. Polym. Bull. 79, 935–953 (2022). https://doi.org/10.1007/s00289-021-03545-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03545-9

Keywords

Navigation