Skip to main content
Log in

Investigations on the structural, mechanical, thermal, and electrical properties of Ce-doped TiO2/poly(n-butyl methacrylate) nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study focused on the fabrication of poly(n-butyl methacrylate) (PBMA) nanocomposites with various concentrations of cerium-doped titanium dioxide (Ce–TiO2) nanoparticles via in situ polymerization technique. The structural characterization and the material properties of all the composites were analyzed by UV–visible, FTIR, XRD, SEM, DSC, TG, and tensile strength measurements. The UV–visible and FTIR studies confirmed the effective inclusion of Ce–TiO2 nanoparticles into the PBMA matrix. The change in amorphous morphology of PBMA to a crystalline structure was observed from the XRD pattern. The SEM morphology revealed the attachment of nanoparticles in the polymer matrix. The inclusion of Ce–TiO2 nanoparticles enhanced the glass transition temperature, and thermal stability of the PBMA matrix was revealed from DSC and TG, respectively. The tensile strength of PBMA was greatly enhanced by the addition of Ce–TiO2 nanoparticles. The AC conductivity, dielectric constant, and dielectric loss studies were also performed in the frequency range 102–106 Hz, and it was observed that addition of Ce–TiO2 nanoparticles greatly enhanced the electrical properties of PBMA. The change in dielectric constant with the addition of nanoparticles was correlated with a theoretical modeling study. This work also extended to study the role of Ce–TiO2 nanoparticles in the reinforcing mechanism of the nanocomposite by comparing the actual tensile strength of the composite with different theoretical modeling. The high dielectric constant and tensile strength of composite are beneficial in designing lightweight and highly efficient nanoelectronic materials based on the family of polybutyl acrylates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mallakpour S, Dinari M. The effects of reactive organoclay on the thermal, mechanical, and microstructural properties of polymer/layered silicate nanocomposites based on chiral poly (amide-imide). J Therm Anal Calorim. 2013;114:329–37.

    Article  CAS  Google Scholar 

  2. Kotsilkova R, Petkova V, Pelovski Y. Thermal analysis of polymer-silicate nanocomposites. J Therm Anal Calorim. 2001;64:591–8.

    Article  CAS  Google Scholar 

  3. Ramesan MT, Nidhisha V, Jayakrishnan P. Synthesis, characterization and conducting properties of novel poly (vinyl cinnamate)/zinc oxide nanocomposites via in situ polymerization. Mater Sci Semicond Process. 2017;63:253–60.

    Article  CAS  Google Scholar 

  4. Jundale DM, Navale ST, Khuspe GD, Dalavi DS, Patil PS, Patil VB. Polyaniline–CuO hybrid nanocomposites: synthesis, structural, morphological, optical and electrical transport studies. J Mater Sci: Mater Electron. 2013;24:3526–35.

    CAS  Google Scholar 

  5. Sampreeth T, Al-Maghrabi MA, Bahuleyan B, Ramesan MT. Synthesis, characterization, thermal properties, conductivity and sensor application study of polyaniline/cerium-doped titanium dioxide nanocomposites. J Mater Sci. 2018;53:591–603.

    Article  CAS  Google Scholar 

  6. Kmita AR, Gajek M, Dudek M, Zych ES, Szaraniec B, Lach R. Thermal, structural and mechanical analysis of polymer/clay nanocomposites with controlled degradation. J Therm Anal Calorim. 2017;127:389–98.

    Article  CAS  Google Scholar 

  7. Ramesan MT, Santhi V. In situ synthesis, characterization, conductivity studies of polypyrrole/silver doped zinc oxide nanocomposites and their application for ammonia gas sensing. J Mater Sci: Mater Electron. 2017;28:18804–14.

    CAS  Google Scholar 

  8. Yan J, Wang C, Gao Y, Zheng Z, Cheng Z, Cui X, Wang H. Experimental investigation on the role of PVA in eliminating inhibition phenomenon of carbon black during the synthesis of polystyrene/carbon black composite particles. Polym Eng Sci. 2012;52:1309–16.

    Article  CAS  Google Scholar 

  9. Chatterjee A. Properties improvement of PMMA using nano TiO2. J Appl Polym Sci. 2010;118:2890–7.

    Article  CAS  Google Scholar 

  10. Assmann SE, Widoniak J, Maret G. Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles. Chem Mater. 2004;16:6–11.

    Article  CAS  Google Scholar 

  11. Khairy M, Amin NH, Kamal R. Optical and kinetics of thermal decomposition of PMMA/ZnO nanocomposites. J Therm Anal Calorim. 2017;128:1811–24.

    Article  CAS  Google Scholar 

  12. Nihmath A, Ramesan MT. Fabrication, characterization and dielectric studies of NBR/hydroxyapatite nanocomposites. J Inorg Organomet Polym. 2017;27:481–9.

    Article  CAS  Google Scholar 

  13. Bakir M, Meyer JL, Economy J, Jasiuk I. Aromatic thermosetting copolyester nanocomposite foams: high thermal and mechanical performance lightweight structural materials. Polymer. 2017;123:311–20.

    Article  CAS  Google Scholar 

  14. Ou Y, Yang F, Yu Z. A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. J Polym Sci, Part B: Polym Phys. 1998;36:789–95.

    Article  CAS  Google Scholar 

  15. Suhailath K, Ramesan MT, Naufal B, Periyat P, Jasna VC, Jayakrishnan P. Synthesis, characterisation and flame, thermal and electrical properties of poly (n-butyl methacrylate)/titanium dioxide nanocomposites. Polym Bull. 2016;74:671–88.

    Article  CAS  Google Scholar 

  16. Suhailath K, Jayakrishnan P, Naufal B, Periyat P, Jasna VC, Ramesan MT. Synthesis by in situ-free radical polymerization, characterization, and properties of poly (n-butyl methacrylate)/samarium-doped titanium dioxide nanoparticles composites. Adv Polym Technol. 2016. https://doi.org/10.1002/adv21770.

    Article  Google Scholar 

  17. Ramesan MT, Sampreeth T. In situ synthesis of polyaniline/Sm-doped TiO2 nanocomposites: evaluation of structural, morphological, conductivity studies and gas sensing applications. J Mater Sci: Mater Electron. 2017;28:16181–91.

    CAS  Google Scholar 

  18. Rahman OU, Ahmad S. Soy polyester urethane/TiO2 and Ce–TiO2 nanocomposites: preparation, characterization and evaluation of electrochemical corrosion resistance performance. RSC Adv. 2016;6:10584–96.

    Article  CAS  Google Scholar 

  19. Shendea TP, Bhanvasea BA, Rathodb AP, Pinjaric DV, Sonawane SH. Sonochemical synthesis of Graphene-Ce–TiO2 and Graphene-Fe-TiO2 ternary hybrid photocatalyst nanocomposite and its application in degradation of crystal violet dye. Ultrason Sonochem. 2018;41:582–9.

    Article  CAS  Google Scholar 

  20. Shaari N, Tan SH, Mohamed AR. Synthesis and characterization of CNT/Ce–TiO2 nanocomposite for phenol degradation. J Rare Earth. 2012;30:651–8.

    Article  CAS  Google Scholar 

  21. Sun P, Liu L, Cui SC, Liu JG. Synthesis, characterization of Ce–doped TiO2 nanotubes with high visible light photocatalytic activity. Catal Lett. 2014;144:2107–13.

    Article  CAS  Google Scholar 

  22. Maddila S, Oseghe EO, Jonnalagadda SB. Photocatalyzed ozonation by Ce doped TiO2 catalyst degradation of pesticide Dicamba in water. J Chem Technol Biotechnol. 2016;91:385–93.

    Article  CAS  Google Scholar 

  23. Sugumaran S, Bellan CS. Transparent nano composite PVA–TiO2 and PMMA–TiO2 thin films: Optical and dielectric properties. Opt Int J Light Electron Opt. 2014;125:5128–33.

    Article  CAS  Google Scholar 

  24. Yuvaraj H, Kim WS, Kim JT, Kang IP, Gal YS, Kim SW, Lim KT. Synthesis of poly(methyl methacrylate) encapsulated TiO2 nanocomposite particles in supercritical CO2. Mol Cryst Liq Cryst. 2009;514:355–65.

    CAS  Google Scholar 

  25. Yuwono AH, Xue J, Wang J, Elim HI, Ji W, Li Y, White T. Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior. J Mater Chem. 2003;13:1475–9.

    Article  CAS  Google Scholar 

  26. Ndinda E, Park H, Kim KN. Preparation and characterization of cerium doped titanium dioxide nano powder for photocatalyst. Korean J Mater Res. 2014;24:33–6.

    Article  CAS  Google Scholar 

  27. Gaur MS, Singh PK, Indolia AP, Yadav PK, Rogachev AA, Rogachev AV. Improvement of dielectric properties of spin coated PMMA-ZnO nano hybrid thin film. Ferroelectrics. 2017;510:56–70.

    Article  CAS  Google Scholar 

  28. Marinovic M, Vukovic J, Jeremic K, Nedeljkovic JM. Thermal properties of PMMA/TiO2 nanocomposites prepared by in situ bulk polymerization. Polym Compos. 2009;30:737–42.

    Article  CAS  Google Scholar 

  29. Laachachi A, Ferriol M, Cochez M, Ruch D, Cuesta JML. The catalytic role of oxide in the thermooxidative degradation of poly(methyl methacrylate)–TiO2 nanocomposites. Polym Degrad Stab. 2008;93:1131–7.

    Article  CAS  Google Scholar 

  30. Takashi O, Yutaka K, Made J, Toru I, Kikuo O. Beads mill-assisted symthesis of polymethyl methacrylate (PMMA)-TiO2 nnaoparticle composites. Ind Eng Chem. 2008;47:2597–604.

    Article  CAS  Google Scholar 

  31. Ramesan MT, Jose C, Jayakrishnan P, Anilkumar T. Multifunctional ternary composites of poly (vinyl alcohol)/cashew tree gum/pumice particles. Polym Compos. 2018;39:38–45.

    Article  CAS  Google Scholar 

  32. Jasna VC, Ramesan MT. Studies on the mechanical, electrical properties and interaction of petroleum fuels with SBR/manganous tungstate nanocomposites. J Inorg Organomet Polym. 2017;27:968–78.

    Article  CAS  Google Scholar 

  33. Goerge S, Varughese KT, Thomas S. Dielectric properties of isotactic polypropylene/nitrile rubber blends: effects of blend ratio, filler addition and dynamic vulcanization. J Appl Polym Sci. 1999;73:255–70.

    Article  Google Scholar 

  34. Reynolds JA, Hough JM. Formulae for dielectric constant of mixtures. Proc Phys Soc Lond B. 1957;70:769–75.

    Article  Google Scholar 

  35. Debnath S, De PP, Khastgir D. Ambient electrical properties of mica-styrene-butadiene rubber composites. Rubber Chem Technol. 1987;61:555–67.

    Article  Google Scholar 

  36. Ramesan MT, Jayakrishnan P, Sampreeth T, Pradyumnan PP. Temperature dependent AC electrical conductivity, thermal stability and different DC conductivity modelling of novel poly (vinyl cinnamate)/zinc oxide nanocomposites. J Therm Anal Calorim. 2017;129:135–45.

    Article  CAS  Google Scholar 

  37. Lazzeri A, Phuong VT. Dependence of the Pukánszky’s interaction parameter B on the interface shear strength (IFSS) of nanofiller- and short fiber-reinforced polymer composites. Compos Sci Technol. 2014;93:106–13.

    Article  CAS  Google Scholar 

  38. Zare SY. A model for tensile strength of polymer/clay nanocomposites assuming complete and incomplete interfacial adhesion between the polymer matrix and nanoparticles by the average normal stress in clay platelets. RSC Adv. 2016;6:57969–76.

    Article  CAS  Google Scholar 

  39. Zare Y, Rhee KY, Park S. Modeling of tensile strength in polymer particulate nanocomposites based on material and interphase properties. J Appl Polym Sci. 2017;134:44869–75.

    Article  CAS  Google Scholar 

  40. Pukanszky B. Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites. 1990;21:255–62.

    Article  CAS  Google Scholar 

  41. Milner JL, Bunget C, Farha FA, Kurfees T, Hammond VH. Modeling tensile strength of materials processed by accumulative roll bonding. J Manuf Process. 2013;15:219–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Ramesan.

Ethics declarations

Conflict of interest

The authors of this article have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhailath, K., Ramesan, M.T. Investigations on the structural, mechanical, thermal, and electrical properties of Ce-doped TiO2/poly(n-butyl methacrylate) nanocomposites. J Therm Anal Calorim 135, 2159–2169 (2019). https://doi.org/10.1007/s10973-018-7285-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7285-9

Keywords

Navigation