Skip to main content
Log in

Preparation and properties evaluation of nitrile rubber nanocomposites reinforced with organo-clay, CaCO3, and SiO2 nanofillers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Acrylonitrile butadiene rubber (NBR)-based nanocomposites reinforced with organo-clay, calcium carbonate, and silica as nanofillers with different contents ranging from 1 to 10 phr (part per hundred parts of rubber) were prepared and characterized. Surface modification was done on the clay nanoparticles to intensify the formation of chemical bond between nanofiller and NBR matrix. A novel procedure and formula were implemented to fabricate considered composites and nanocomposites. Variety of tests and analyzes were done on all nanofillers and fabricated nanocomposites and accordingly, curing conditions, mechanical and chemical properties of the resulting NBR nanocomposites intercalated with nanofillers were further improved and optimized. The nanocomposite containing 10 phr of nanoorgano-clay were found to be the best choice among other synthesized nanocomposites in the case of improved curing conditions, mechanical, and chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cao X, Xu C, Wang Y et al (2013) New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber. Polym Test 32:819–826. https://doi.org/10.1016/j.polymertesting.2013.04.005

    Article  CAS  Google Scholar 

  2. Sadeghalvaad M, Sabbaghi S (2015) The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties. Powder Technol 272:113–119. https://doi.org/10.1016/j.powtec.2014.11.032

    Article  CAS  Google Scholar 

  3. Sengupta R, Chakraborty S, Bandyopadhyay S et al (2007) A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Polym Eng Sci 47:1956–1974. https://doi.org/10.1002/pen.20921

    Article  CAS  Google Scholar 

  4. Asmatulu R, Nguyen P, Asmatulu E (2013) Nanotechnology safety in the automotive industry. In: Asmatulu R (ed) Nanotechnology safety, chap 5. Elsevier, Amsterdam, pp 57–72. ISBN 9780444594389. https://doi.org/10.1016/B978-0-444-59438-9.00005-9

  5. Senthivel K, Manikandan K, Prabu B (2015) Studies on the mechanical properties of carbon black/halloysite nanotube hybrid fillers in nitrile rubber nanocomposites. Mater Today Proc 2:3627–3637. https://doi.org/10.1016/j.matpr.2015.07.118

    Article  Google Scholar 

  6. Satyanarayana MS, Bhowmick AK, Dinesh Kumar K (2016) Preferentially fixing nanoclays in the phases of incompatible carboxylated nitrile rubber (XNBR)-natural rubber (NR) blend using thermodynamic approach and its effect on physico mechanical properties. Polymer (Guildf) 99:21–43. https://doi.org/10.1016/j.polymer.2016.06.063

    Article  CAS  Google Scholar 

  7. Eyssa HM, Abulyazied DE, Abdulrahman M, Youssef HA (2017) Mechanical and physical properties of nanosilica/nitrile butadiene rubber composites cured by gamma irradiation. Egypt J Pet. https://doi.org/10.1016/j.ejpe.2017.06.004

    Article  Google Scholar 

  8. Luan J, Wang S, Hu Z, Zhang L (2012) Synthesis techniques, properties and applications of polymer nanocomposites. Curr Org Synth 9:114–136. https://doi.org/10.2174/157017912798889161

    Article  CAS  Google Scholar 

  9. Qureshi MN, Qammar H (2010) Mill processing and properties of rubber–clay nanocomposites. Mater Sci Eng, C 30:590–596. https://doi.org/10.1016/j.msec.2010.02.008

    Article  CAS  Google Scholar 

  10. Okada A, Usuki A (1995) The chemistry of polymer-clay hybrids. Mater Sci Eng, C 3:109–115. https://doi.org/10.1016/0928-4931(95)00110-7

    Article  Google Scholar 

  11. Khanjanzadeh H, Tabarsa T, Shakeri A (2012) Morphology, dimensional stability and mechanical properties of polypropylene–wood flour composites with and without nanoclay. J Reinf Plast Compos 31:341–350. https://doi.org/10.1177/0731684412438793

    Article  CAS  Google Scholar 

  12. Khanjanzadeh H, Tabarsa T, Shakeri A, Omidvar A (2011) Effect of organoclay platelets on the mechanical properties of wood–plastic composites formulated with virgin and recycled polypropylene. Wood Mater Sci Eng 6:207–212. https://doi.org/10.1080/17480272.2011.606915

    Article  CAS  Google Scholar 

  13. Zahedi M, Khanjanzadeh H, Pirayesh H, Saadatnia MA (2015) Utilization of natural montmorillonite modified with dimethyl, dehydrogenated tallow quaternary ammonium salt as reinforcement in almond shell flour–polypropylene bio-nanocomposites. Compos B Eng 71:143–151. https://doi.org/10.1016/j.compositesb.2014.11.009

    Article  CAS  Google Scholar 

  14. Zahedi M, Pirayesh H, Khanjanzadeh H, Tabar MM (2013) Organo-modified montmorillonite reinforced walnut shell/polypropylene composites. Mater Des 51:803–809. https://doi.org/10.1016/j.matdes.2013.05.007

    Article  CAS  Google Scholar 

  15. Sahebian S, Zebarjad SM, Khaki JV, Sajjadi SA (2009) The effect of nano-sized calcium carbonate on thermodynamic parameters of HDPE. J Mater Process Technol 209:1310–1317. https://doi.org/10.1016/j.jmatprotec.2008.03.066

    Article  CAS  Google Scholar 

  16. Zebarjad SM, Sajjadi SA (2008) On the strain rate sensitivity of HDPE/CaCO3 nanocomposites. Mater Sci Eng, A 475:365–367. https://doi.org/10.1016/j.msea.2007.05.008

    Article  CAS  Google Scholar 

  17. Wang Q, Song Q, Qiao J et al (2011) Good dispersion of hydrophilic nanoscale calcium carbonate particles in nitrile butadiene rubber matrix. Polymer (Guildf) 52:3496–3502. https://doi.org/10.1016/j.polymer.2011.05.037

    Article  CAS  Google Scholar 

  18. Wu D, Wang X, Song Y, Jin R (2004) Nanocomposites of poly(vinyl chloride) and nanometric calcium carbonate particles: effects of chlorinated polyethylene on mechanical properties, morphology, and rheology. J Appl Polym Sci 92:2714–2723. https://doi.org/10.1002/app.20295

    Article  CAS  Google Scholar 

  19. Wang Q, Zhang X, Dong W et al (2007) Novel rigid poly(vinyl chloride) ternary nanocomposites containing ultrafine full-vulcanized powdered rubber and untreated nano-sized calcium carbonate. Mater Lett 61:1174–1177. https://doi.org/10.1016/j.matlet.2006.06.078

    Article  CAS  Google Scholar 

  20. Li J, You L, Tang S-K (2014) A process to prepare high-quality natural rubber silica masterbatch by liquid phase mixing, Patent Application WO2016014037A1, issued: 2016-01-28

  21. Sala RL, Arantes TM, Longo E et al (2014) Evaluation of modified silica nanoparticles in carboxylated nitrile rubber nanocomposites. Colloids Surf A Physicochem Eng Asp 462:45–51. https://doi.org/10.1016/j.colsurfa.2014.08.012

    Article  CAS  Google Scholar 

  22. Kim J, Oh T, Lee D (2003) Morphology and rheological properties of nanocomposites based on nitrile rubber and organophilic layered silicates. Polym Int 52:1203–1208. https://doi.org/10.1002/pi.1249

    Article  CAS  Google Scholar 

  23. Taguet A, Cassagnau P, Lopez-Cuesta J-M (2014) Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Prog Polym Sci 39:1526–1563. https://doi.org/10.1016/j.progpolymsci.2014.04.002

    Article  CAS  Google Scholar 

  24. da Silva ALN, Rocha MCG, Moraes MAR et al (2002) Mechanical and rheological properties of composites based on polyolefin and mineral additives. Polym Test 21:57–60. https://doi.org/10.1016/S0142-9418(01)00047-2

    Article  Google Scholar 

  25. Ishida H (1988) Interfaces in polymer, ceramic, and metal matrix composites. In: Proceedings of the second international conference on composite interfaces (ICCI-II), Cleveland, OH, June 13–17, 1988

  26. Liu Yingbin, Na Li MR (2013) Toughening poly (trimethylene terephthalate) by maleinized acrylonitrile–butadiene–styrene. Macromol Indian J 9:91–101

    CAS  Google Scholar 

  27. Li Y, Wu X, Song J et al (2017) Reparation of recycled acrylonitrile–butadiene–styrene by pyromellitic dianhydride: reparation performance evaluation and property analysis. Polymer (Guildf) 124:41–47. https://doi.org/10.1016/j.polymer.2017.07.042

    Article  CAS  Google Scholar 

  28. Kohjiya S, Ikeda Y (2000) Reinforcement of general-purpose grade rubbers by silica generated in situ. Rubber Chem Technol 73:534–550. https://doi.org/10.5254/1.3547604

    Article  CAS  Google Scholar 

  29. Poh BT, Kwok CP, Lim GH (1995) Reversion behaviour of epoxidized natural rubber. Eur Polym J 31:223–226. https://doi.org/10.1016/0014-3057(94)00167-7

    Article  CAS  Google Scholar 

  30. Poh BT, Ismail H, Tan KS (2002) Effect of filler loading on tensile and tear properties of SMR L/ENR 25 and SMR L/SBR blends cured via a semi-efficient vulcanization system. Polym Test 21:801–806. https://doi.org/10.1016/S0142-9418(02)00014-4

    Article  CAS  Google Scholar 

  31. Zuiderduin WC, Westzaan C, Huétink J, Gaymans R (2003) Toughening of polypropylene with calcium carbonate particles. Polymer (Guildf) 44:261–275. https://doi.org/10.1016/S0032-3861(02)00769-3

    Article  CAS  Google Scholar 

  32. Poh BT, Ismail H, Quah EH, Chin PL (2001) Cure and mechanical properties of filled SMR L/ENR 25 and SMR L/SBR blends. J Appl Polym Sci 81:47–52. https://doi.org/10.1002/app.1411

    Article  CAS  Google Scholar 

  33. Preetha Nair K, Thomas P, Joseph R (2012) Latex stage blending of multiwalled carbon nanotube in carboxylated acrylonitrile butadiene rubber: mechanical and electrical properties. Mater Des 41:23–30. https://doi.org/10.1016/j.matdes.2012.04.021

    Article  CAS  Google Scholar 

  34. Hanas VK, Hanas T (2016) Development and characterization of NBR/silica nanocomposites. J Mater Sci Mech Eng 3:27–30

    Google Scholar 

  35. Hwang W-G, Wei K-H, Wu C-M (2004) Mechanical, thermal, and barrier properties of NBR/organosilicate nanocomposites. Polym Eng Sci 44:2117–2124. https://doi.org/10.1002/pen.20217

    Article  CAS  Google Scholar 

  36. Al-Hosney HA, Grassian VH (2005) Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: a transmission and ATR-FTIR study. Phys Chem Chem Phys 7:1266. https://doi.org/10.1039/b417872f

    Article  CAS  PubMed  Google Scholar 

  37. Rajkumar K, Ranjan P, Thavamani P, Jeyanthi P, Pazhanisamy P (2013) Dispersion studies of nanosilica in NBR based polymer nanocomposite. Rasayan J Chem 6:122–133

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Fars Science & Technology Park for preparing equipped laboratories for conducting tests in the manuscript and extend their appreciations to MS Fatemeh Sadeghzadeh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Sadeghalvaad.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghalvaad, M., Dabiri, E., Zahmatkesh, S. et al. Preparation and properties evaluation of nitrile rubber nanocomposites reinforced with organo-clay, CaCO3, and SiO2 nanofillers. Polym. Bull. 76, 3819–3839 (2019). https://doi.org/10.1007/s00289-018-2583-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2583-8

Keywords

Navigation