Skip to main content

Advertisement

Log in

Synthesis of 9H-carbazole-9-carbothioic methacrylic thioanhydride, electropolymerization, characterization and supercapacitor applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel organic molecule of 9H-carbazole-9-carbothioic methacrylic thioanhydride (CzCS2metac) was synthesized by incorporating CS2 and methacrylate groups into the carbazole monomer structure. CzCS2metac was characterized by FTIR, 1H-NMR and 13C-NMR spectroscopy. CzCS2metac was electropolymerized in 0.1 M tetraethylammonium tetrafluoroborate (TEABF4)/acetonitrile (CH3CN) on glassy carbon electrode (GCE). The characterization of the electrocoated P(CzCS2metac)/CFME thin film was studied by various techniques, such as cyclic voltammetry, scanning electron microscopy–energy-dispersive X-ray analysis and electrochemical impedance spectroscopy. The specific capacitance (C sp) of P(CzCS2metac)/MWCNT/GCE in the scan rate of 20 mV s−1 (C sp = 38.48 F g−1 from area formula, C sp = 38.52 F g−1 from charge formula) was increased ~15.66 and ~15.64 times in area and charge formulas compared to P(CzCS2metac)/GCE (C sp = 2.46 F g−1 from area and charge formulas). The same results were also obtained from Nyquist graphs. The specific capacitance value of composite film (C sp = 1.09 × 10−3 F) is ~15.66 times higher than the polymer film (C sp = 6.92 × 10−5 F). The composite film may be used as supercapacitor electrode material in energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. McGrath JE, Rasmussen L, Shultz AR, Shobha HK, Sankarapandian M, Glass T, Long TE, Pasquale AJ (2006) Novel carbazole phenoxy-based methacrylates to produce high-refractive index polymers. Polymer 47:4042–4057

    Article  CAS  Google Scholar 

  2. Roncali J (1992) Conjugated poly(thiophenes)-synthesis, functionalization, and applications. Chem Rev 92(4):711–738

    Article  CAS  Google Scholar 

  3. Li XG, Huang MR, Duan W, Yang YL (2002) Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chem Rev 102(9):2925–3030

    Article  CAS  Google Scholar 

  4. Zhao M, Zhang HT, Ma FN, Zhang Y, Guo XZ, Zhang HQ (2013) Efficient synthesis of monodisperse, highly crosslinked, and “living” functional polymer microspheres by the ambient temperature iniferter- induced “living” radical precipitation polymerization. J Polym Sci Part A Polym Chem 51(9):1983–1998

    Article  CAS  Google Scholar 

  5. Sarac AS, Parlak EA, Serhatli E, Cakir T (2007) Microcomposite electrochemical capacitor: electrocoating of poly[N-hydroxymethylcarbazole] onto carbon fiber, surface morphology, spectroscopic surface characterization, electrochemical impedance spectroscopy. J Appl Polym Sci 104(1):238–246

    Article  CAS  Google Scholar 

  6. Ates M, Uludag N (2010) Synthesis and electropolymerization of 9-(4-vinylbenzyl)-9H-carbazole on carbon fiber microelectrode: capacitive behavior of poly(9-(4-vinylbenzyl)-9H-carbazole). Fibers Polym 11(3):331–337

    Article  CAS  Google Scholar 

  7. Lmimouni K, Legrand C, Chapoton A (1998) Optical and electrical characterizations of poly(N-alkylcarbazole) light-emitting diodes, Interpretations of electrical behavior. Synth Met 97:151–155

    Article  CAS  Google Scholar 

  8. Uludag N, Ates M, Tercan B, Ermis E, Hökelek T (2010) 9-Benzyl-9H-carbazole. Acta Cryst Sect E 66:U94–O17077

    Article  Google Scholar 

  9. Ates M, Uludag N, Sarac AS (2011) Synthesis and electropolymerization of 9-tosyl-9H-carbazole, Electrochemical impedance spectroscopic study and circuit modelling. Fibers Polym 12:8–14

    Article  CAS  Google Scholar 

  10. Ates M, Sarac AS (2009) Capacitive behavior of polycarbazole and poly(N-vinylcarbazole)-coated carbon fiber microelectrodes in various solutions. J Appl Electrochem 39(10):2043–2048

    Article  CAS  Google Scholar 

  11. Ates M, Uludag N (2013) 6-(3,6-di(thiophene-2-yl)-9H-carbazole-9-yl)-hexanoic acid, alternating copolymer formation, characterization and impedance evaluations. Des Monomers Polym 16(4):398–406

    Article  CAS  Google Scholar 

  12. Sun XF, Xu YL, Wang J (2012) Electrpolymerized composite film of polypyrrole and functionalized multi-walled carbon nanotubes: effect of functionalization time on capacitive performance. J Solid State Electrochem 16(5):1781–1789

    Article  CAS  Google Scholar 

  13. Mylnikov VS (1994) Photoconducting polymers. Adv Polym Sci 115:1–88

    Article  CAS  Google Scholar 

  14. Lee JH, Park JW, Kim SH, Kim HK, Chang YW, Choi SK (1996) Novel polymeric diparhyl derivatives containing a carbazole moiety via palladium-catalyzed polycondensation: synthesis and characterization. J Polym Sci Part A Polym Chem 34:1617–1621

    Article  CAS  Google Scholar 

  15. Chen GZ, Shaffer MSP, Coleby D, Dixan G, Zhou WZ, Fray DJ, Windle AH (2000) Carbon nanotube and polypyrrole composites: coating and doping. Adv Mater 12(7):522–526

    Article  CAS  Google Scholar 

  16. Ago H, Petritch K, Shaffer MSP, Windle AH, Friend RH (1999) Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater 11(15):1281–1285

    Article  CAS  Google Scholar 

  17. Zhang FH, Ni JJ, Yu YJ (2013) High power factor AC-DC Led driver with film capacitors. IEEE Trans Power Electron 28(10):4831–4840

    Article  Google Scholar 

  18. Dhibar S, Sahoo S, Das CK (2013) Fabrication of transition method doped polypyrrole/multiwalled carbon nanotubes nanocomposites for supercapacitor applications. J Appl Polym Sci 130(1):554–562

    Article  CAS  Google Scholar 

  19. Liu J, Li M, Zhang YQ, Yang LL, Yao JS (2013) Preparation and enhanced electrochemical properties of Ag/polypyrrole composites electrode materials. J Appl Polym Sci 129(6):3787–3792

    Article  CAS  Google Scholar 

  20. Chaudhari S, Sharma Y, Archana PS, Jose R, Ramakrishna S, Mhaisalkar S (2013) Electrospun polyaniline nanofibers web electrodes for supercapacitors. J Appl Polym Sci 129(4):1660–1668

    Article  CAS  Google Scholar 

  21. Tran C, Kalra V (2013) Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. J Power Sources 235:289–296

    Article  CAS  Google Scholar 

  22. Zhang XT, Zhang J, Liu ZF (2005) Conducting polymer/carbon nanotube composite films made by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. Carbon 43:2186–2191

    Article  CAS  Google Scholar 

  23. Fu CP, Zhou HH, Liu R, Huang ZY, Chen JH, Kuang YF (2012) Supercapacitor based on electropolymerized polythiophene and multi-walled carbon nanotubes. Mater Chem Phys 132:596–600

    Article  CAS  Google Scholar 

  24. Zhou D, Zhu XL, Zhu J, Yin HS (2005) Influence of the chemical structure of the dithiocarbamates with different N-groups on the reversible addition-fragmentation chain transfer polymerization of styrene. J Polym Sci Part A Polym Chem 43(20):4849–4856

    Article  CAS  Google Scholar 

  25. Xue XQ, Zhu JA, Zhang ZB, Cheng ZP, Tu YF, Zhu XL (2010) Synthesis and characterization of azobenzene-functionalized poly(styrene)-b-poly(vinyl acetate) via the combination of RAFT and ‘’click’’ chemistry. Polymer 51:3083–3090

    Article  CAS  Google Scholar 

  26. Kundu S, Snyder BER, Walsh AP, Brennessel WW (2013) C=S bond activation of thio ethers using (dippe) Pt (NBE)(2). Polyhedron 58:99–105

    Article  CAS  Google Scholar 

  27. Sarac AS, Ates M, Parlak EA (2006) Electrolyte and solvent effects of electrocoated polycarbazole thin films on carbon fiber microelectrode. J Appl Electrochem 36:889–898

    Article  CAS  Google Scholar 

  28. Rusling FJ, Suib SL (1994) Characterizing materials with cyclic voltammetry. Adv Mater 6:922–930

    Article  CAS  Google Scholar 

  29. Vorotyntsev MA, Daikhin LI, Levi MD (1994) Modeling the impedance properties of electrodes coated with electroactive polymer films. J Electroanal Chem 364(1–2):37–49

    Article  CAS  Google Scholar 

  30. Ates M, Uludag N, Sarac AS (2011) Synthesis of 2-(9H-Carbazole-9-yl)ethyl Methacrylate: electrochemical Impedance Spectroscopic Study of Poly(2-(9H-carbazole-9-yl)ethyl methacrylate) on Carbon fiber. J Appl Polym Sci 121:3475–3482

    Article  CAS  Google Scholar 

  31. Appetecchi GB, Croce F, Scrosati B (1997) High performance electrolyte membranes for plastic lithium batteries. J Power Sources 66:77–82

    Article  CAS  Google Scholar 

  32. Novak P, Muller K, Santharam KSV, Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97(1):207–281

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work supported by The Scientific & Technological Council of Turkey (TUBITAK)-TBAG-110T791 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Ates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ates, M., Uludag, N. & Arican, F. Synthesis of 9H-carbazole-9-carbothioic methacrylic thioanhydride, electropolymerization, characterization and supercapacitor applications. Polym. Bull. 71, 1557–1573 (2014). https://doi.org/10.1007/s00289-014-1141-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1141-2

Keywords

Navigation