Skip to main content

Advertisement

Log in

Poly(o-toluidine)/multiwalled carbon nanotube-based nanocomposites: An efficient electrode material for supercapacitors

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report high-performance symmetric supercapacitors from poly(o-toluidine) (POT)/multiwalled carbon nanotubes (MWCNTs) composite. POT/MWCNTs composites with varying MWCNTs concentration are produced via in situ polymerization. Performance of supercapacitor is analyzed with sulfuric acid (H2SO4) as electrolyte and POT/MWCNTs nanocomposite as symmetrical electrodes. Nanocomposite offers synergistic combination of electrostatic double-layer charge storage of MWCNTs and pseudocapacitance of POT, demonstrating enhanced electrochemistry. The possible interactions between MWCNTs and POT are analyzed via Raman and FTIR spectroscopies. SEM results confirm coating of POT over nanotubes’ surface and possible tunneling paths between adjacent MWCNTs and POT. The specific capacitance is calculated from both cyclic voltammetry (Csp = 459 F g−1) and galvanostatic charging–discharging (Cd = 339 F g−1). Interestingly, Cd increases from 339 (initial value) to 350 F g−1 after 20 cycles, attributable to improved interfacial kinetics. Further, cell offers specific energy and power densities of 19.6 Wh kg−1 and 271 kW kg−1, respectively, with excellent cyclability (~ 12.4% capacitance decay over 2000 cycles) and Coulombic efficiency (~ 98 to 101%).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23(42), 4828–50 (2011)

    Article  CAS  Google Scholar 

  2. N. Hu, L. Zhang, C. Yang, J. Zhao, Z. Yang, H. Wei, H. Liao, Z. Feng, A. Fisher, Y. Zhang, Z.J. Xu, Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors. Sci. Rep. 6(1), 0 (2016)

    Google Scholar 

  3. C. Meng, C. Liu, L. Chen, Hu. Chunhua, S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 10(10), 4025–4031 (2010)

    Article  CAS  Google Scholar 

  4. J. Zhang, Y. Li, M. Han, Q. Xia, Q. Chen, M. Chen, Constructing ultra-thin Ni-MOF@ NiS2 nanosheets arrays derived from metal organic frameworks for advanced all-solid-state asymmetric supercapacitor. Mater. Res. Bull. 137, 111186 (2021)

    Article  CAS  Google Scholar 

  5. J. Du, R. Liu, Y. Yu, Y. Zhang, Y. Zhang, A. Chen, N-doped ordered mesoporous carbon prepared by solid–solid grinding for supercapacitors. J. Mater. Res. 33, 3408–3417 (2018)

    Article  CAS  Google Scholar 

  6. C. Zhang, Z. Peng, Yu. Jian Lin, G.R. Zhu, C.-C. Hwang, Lu. Wei, R.H. Hauge, J.M. Tour, Splitting of a vertical multiwalled carbon nanotube carpet to a graphene nanoribbon carpet and its use in supercapacitors. ACS Nano 7(6), 5151–5159 (2013)

    Article  CAS  Google Scholar 

  7. C. Arbizzani, M. Mastragostino, F. Soavi, New trends in electrochemical supercapacitors. J. Power Sources 100(1–2), 164–170 (2001)

    Article  CAS  Google Scholar 

  8. Z.H. Li, Q.L. Xia, L.L. Liu, G.T. Lei, Q.Z. Xiao, D.S. Gao, X.D. Zhou, Effect of zwitterionic salt on the electrochemical properties of a solid polymer electrolyte with high temperature stability for lithium ion batteries. Electrochim. Acta 56(2), 804–809 (2010)

    Article  CAS  Google Scholar 

  9. Yu. Zhou, Hu. Xiaoyang, Y. Shang, C. Hua, P. Song, X. Li, Y. Zhang, A. Cao, Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers. RSC Adv. 6(67), 62062–62070 (2016)

    Article  CAS  Google Scholar 

  10. Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao, S. Xie, Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ. Sci. 4(4), 1440–6 (2011)

    Article  CAS  Google Scholar 

  11. I. Shown, A. Ganguly, L.C. Chen, K.H. Chen, Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 3(1), 2–26 (2015)

    Article  CAS  Google Scholar 

  12. Yu. Li, B. Wang, H. Chen, W. Feng, Improvement of the electrochemical properties via poly (3, 4-ethylenedioxythiophene) oriented micro/nanorods. J. Power Sources 195(9), 3025–3030 (2010)

    Article  CAS  Google Scholar 

  13. S. Islam, G.B. Lakshmi, M. Zulfequar, M. Husain, A.M. Siddiqui, Comparative studies of chemically synthesized and RF plasma-polymerized poly (o-toluidine). Pramana 84(4), 653–65 (2015)

    Article  CAS  Google Scholar 

  14. J.C. Carlberg, O. Inganäs, Poly (3, 4-ethylenedioxythiophene) as electrode material in electrochemical capacitors. J. Electrochem. Soc. 144(4), L61–L64 (1997)

    Article  CAS  Google Scholar 

  15. C. Meng, C. Liu, S. Fan, Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochem. Commun. 11(1), 186–189 (2009)

    Article  CAS  Google Scholar 

  16. S. Islam, M. Ganaie, S. Ahmad, A.M. Siddiqui, M. Zulfequar, Dopant effect and characterization of poly (o-toluidine)/vanadium pentoxide composites prepared by in situ polymerization process. Int. J. Phys. 2, 105–22 (2014)

    Google Scholar 

  17. H. Zhou, H.-J. Zhai, G. Han, Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly (3, 4-ethylenedioxythiophene)-carbon nanotubes. J. Power Sources 323, 125–133 (2016)

    Article  CAS  Google Scholar 

  18. P.F. Ortega, J.P. Trigueiro, G.G. Silva, R.L. Lavall, Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid. Electrochim. Acta 10(188), 809–817 (2016)

    Article  CAS  Google Scholar 

  19. V.D. Patake, C.D. Lokhande, O.S. Joo, Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments. Appl. Surf. Sci. 255(7), 4192–4196 (2009)

    Article  CAS  Google Scholar 

  20. D.T. Pham, T.H. Lee, D.H. Luong, F. Yao, A. Ghosh, V.T. Le, T.H. Kim, B. Li, J. Chang, Y.H. Lee, Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 9(2), 2018–27 (2015)

    Article  CAS  Google Scholar 

  21. Y. Liao, X.-G. Li, E.M.V. Hoek, R.B. Kaner, Carbon nanotube/polyaniline nanofiber ultrafiltration membranes. J. Mater. Chem. A 1(48), 15390–15396 (2013)

    Article  CAS  Google Scholar 

  22. F.M. Guo, R.Q. Xu, X. Cui, L. Zhang, K.L. Wang, Y.W. Yao, J.Q. Wei, High performance of stretchable carbon nanotube–polypyrrole fiber supercapacitors under dynamic deformation and temperature variation. J. Mater. Chem. A 4(23), 9311–9318 (2016)

    Article  CAS  Google Scholar 

  23. H. Lin, Li. Li, J. Ren, Z. Cai, L. Qiu, Z. Yang, H. Peng, Conducting polymer composite film incorporated with aligned carbon nanotubes for transparent, flexible and efficient supercapacitor. Sci. Rep. 3(1), 1–6 (2013)

    Article  CAS  Google Scholar 

  24. T. Abdiryim, Z. Xiao-Gang, R. Jamal, Synthesis and characterization of poly (o-toluidine) doped with organic sulfonic acid by solid-state polymerization. J. Appl. Polym. Sci. 96(5), 1630–1634 (2005)

    Article  CAS  Google Scholar 

  25. S. Bilal, R. Holze, Electrochemical copolymerization of o-toluidine and o-phenylenediamine. J. Electroanal. Chem. 592(1), 1–13 (2006)

    Article  CAS  Google Scholar 

  26. M. Mastragostino, C. Arbizzani, F. Soavi, Polymer-based supercapacitors. J. Power Sources 97, 812–815 (2001)

    Article  Google Scholar 

  27. K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective. J. Mater. Chem. A 2(28), 10776–10787 (2014)

    Article  CAS  Google Scholar 

  28. La. Li, Z. Lou, W. Han, Di. Chen, K. Jiang, G. Shen, Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv. Mater. Technol. 2(3), 1600282 (2017)

    Article  CAS  Google Scholar 

  29. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000)

    Article  CAS  Google Scholar 

  30. A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001)

    Article  CAS  Google Scholar 

  31. C.C. Chang, C.C. Chen, W.H. Hung, I.K. Hsu, M.A. Pimenta, S.B. Cronin, Strain-induced D band observed in carbon nanotubes. Nano Res. 5(12), 854–862 (2012)

    Article  CAS  Google Scholar 

  32. A. Shabir, P. Sehrawat, C.M. Julien, S.S. Islam, Reversible synthesis of GO: role of differential bond structure transformation in fine-tuning photodetector response. Nanotechnology 32(4), 045601 (2020)

    Article  CAS  Google Scholar 

  33. Y. Zhu, N. Li, T. Lv, Y. Yao, H. Peng, J. Shi, S. Cao, T. Chen, Ag-doped PEDOT: PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. J. Mater. Chem. A 6(3), 941–947 (2018)

    Article  CAS  Google Scholar 

  34. Y. Zhou, H. Xu, N. Lachman, M. Ghaffari, S. Wu, Y. Liu, A. Ugur, K.K. Gleason, B.L. Wardle, Q.M. Zhang, Advanced asymmetric supercapacitor based on conducting polymer and aligned carbon nanotubes with controlled nanomorphology. Nano Energy 9, 176–185 (2014)

    Article  CAS  Google Scholar 

  35. Li, Lin, David C. Loveday, Dhurjati SK Mudigonda, and John P. Ferraris. "Effect of electrolytes on performance of electrochemical capacitors based on poly [3-(3, 4-difluorophenyl) thiophene]." Journal of the Electrochemical Society 149, no. 9 (2002): A1201-A1207.

  36. N. Hu, L. Zhang, C. Yang, J. Zhao, Z. Yang, H. Wei, H. Liao, Z. Feng, A. Fisher, Y. Zhang, Z.J. Xu, Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors. Sci Rep. 6(1), 10 (2016)

    Google Scholar 

  37. Y. Bo, Y. Zhao, Z. Cai, A. Bahi, C. Liu, F. Ko, Facile synthesis of flexible electrode based on cotton/polypyrrole/multi-walled carbon nanotube composite for supercapacitors. Cellulose 25(7), 4079–4091 (2018)

    Article  CAS  Google Scholar 

  38. M.V. Kiamahalleh, S.H. Zein, G. Najafpour, S.A. SATA, S. Buniran, Multiwalled carbon nanotubes based nanocomposites for supercapacitors: a review of electrode materials. Nano 7(02), 1230002 (2012)

    Article  Google Scholar 

  39. P. Bhattacharya, S. Sahoo, C.K. Das, Microwave absorption behaviour of MWCNT based nanocomposites in X-band region. eXPRESS Polym. Lett. 7(3), 212–223 (2013)

    Article  CAS  Google Scholar 

  40. A. Eftekhari, L. Li, Y. Yang, Polyaniline supercapacitors. J. Power Sources 347, 86–107 (2017)

    Article  CAS  Google Scholar 

  41. C. Sun, X. Li, J. Zhao, Z. Cai, F. Ge, A freestanding polypyrrole hybrid electrode supported by conducting silk fabric coated with PEDOT: PSS and MWCNTs for high-performance supercapacitor. Electrochim. Acta 317, 42–51 (2019)

    Article  CAS  Google Scholar 

  42. Y. Ma, H. Chang, M. Zhang, Y. Chen, Graphene-based materials for lithium-ion hybrid supercapacitors. Adv. Mater. 27(36), 5296–5308 (2015)

    Article  CAS  Google Scholar 

  43. L. Yuan, B. Yao, Hu. Bin, K. Huo, W. Chen, J. Zhou, Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 6(2), 470–476 (2013)

    Article  CAS  Google Scholar 

  44. B. Che, H. Li, D. Zhou, Y. Zhang, Z. Zeng, C. Zhao, C. He, E. Liu, Lu. Xuehong, Porous polyaniline/carbon nanotube composite electrode for supercapacitors with outstanding rate capability and cyclic stability. Composite B 165, 671–678 (2019)

    Article  CAS  Google Scholar 

  45. Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017)

    Article  CAS  Google Scholar 

  46. Z. Niu, P. Luan, Q. Shao, H. Dong, J. Li, J. Chen, D. Zhao et al., A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ Sci 5(9), 8726–8733 (2012)

    Article  CAS  Google Scholar 

  47. Wang, Luyuan Paul, Yann Leconte, Zhenxing Feng, Chao Wei, Yi Zhao, Qing Ma, Wenqian Xu et al. "Novel Preparation of N‐Doped SnO2 Nanoparticles via Laser‐Assisted Pyrolysis: Demonstration of Exceptional Lithium Storage Properties." Advanced Materials 29, no. 6 (2017): 1603286.

  48. H. Gao et al., An urchin-like MgCo2O4@ PPy core–shell composite grown on Ni foam for a high-performance all-solid-state asymmetric supercapacitor. Nanoscale 10(21), 10190–10202 (2018)

    Article  CAS  Google Scholar 

  49. S. Gao et al., Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries. ACS Sustain Chem Eng 6(3), 3255–3263 (2018)

    Article  CAS  Google Scholar 

  50. L. Feng, K. Wang, X. Zhang, X. Sun, C. Li, X. Ge, Y. Ma, Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv. Func. Mater. 28(4), 1704463 (2018)

    Article  CAS  Google Scholar 

  51. K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22(4), 1392–1401 (2010)

    Article  CAS  Google Scholar 

  52. Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes–a review. J Materiomics 2(1), 37–54 (2016)

    Article  Google Scholar 

  53. G. Qu, J. Cheng, X. Li, D. Yuan, P. Chen, X. Chen, B. Wang, H. Peng, A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 28(19), 3646–3652 (2016)

    Article  CAS  Google Scholar 

  54. X. Zhang, H. Zhang, Z. Lin, Yu. Minghao, Lu. Xihong, Y. Tong, Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci. China Mater. 59(6), 475–494 (2016)

    Article  CAS  Google Scholar 

  55. S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys. Chem. C 112(11), 4406–4417 (2008)

    Article  CAS  Google Scholar 

  56. B.C. Kim, J.M. Ko, G.G. Wallace, A novel capacitor material based on Nafion-doped polypyrrole. J. Power Sources 177(2), 665–668 (2008)

    Article  CAS  Google Scholar 

  57. B.S. Singu, P. Srinivasan, K.R. Yoon, Emulsion polymerization method for polyaniline-multiwalled carbon nanotube nanocomposites as supercapacitor materials. J Solid State Electrochem 20(12), 3447–3457 (2016)

    Article  CAS  Google Scholar 

  58. T.K. Zhao, X.L. Ji, P. Bi, W.B. Jin, C.Y. Xiong, A.E. Dang, H. Li, T.H. Li, S.M. Shang, Z.F. Zhou, Electrochim Acta. 230, 342–349 (2017)

    Article  CAS  Google Scholar 

  59. W.K. Chee, H.N. Lim, I. Harrison, K.F. Chong, Z. Zainal, C.H. Ng, N.M. Huang, Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochim. Acta 157, 88–94 (2015)

    Article  CAS  Google Scholar 

  60. J. Wu, X. Shi, W. Song, H. Ren, C. Tan, S. Tang, X. Meng, Hierarchically porous hexagonal microsheets constructed by well-interwoven MCo2S4 (M= Ni, Fe, Zn) nanotube networks via two-step anion-exchange for high-performance asymmetric supercapacitors. Nano Energy 45, 439–447 (2018)

    Article  CAS  Google Scholar 

  61. R. Malik, Lu. Zhang, C. McConnell, M. Schott, Y.-Y. Hsieh, R. Noga, N.T. Alvarez, V. Shanov, Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon 116, 579–590 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work supported by the SERB (file No: PDF/2016/00587), Delhi, Science and Engineering Research Board (a statutory body of the development of Science & technology, government of India).The authors greatly acknowledge the CSIR (file No: Pool No. 9056- A), Council of Scientific and Industrial Research, Human Resource Development Group (HRDG), Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zulfequar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, S., Sehrawat, P., Khan, H. et al. Poly(o-toluidine)/multiwalled carbon nanotube-based nanocomposites: An efficient electrode material for supercapacitors. Journal of Materials Research 36, 3472–3483 (2021). https://doi.org/10.1557/s43578-021-00383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00383-3

Keywords

Navigation