Skip to main content
Log in

The effects of physical and chemical interactions in the formation of cellulose aerogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Aerogels are low density materials which are produced from wet gels, and find a variety of potential uses. The relative importance of shape/geometry and self-association of the starting materials for the production of aerogels is studied herein. Aerogels were produced from microcrystalline cellulose (MCC) and its functionalized analog, carboxymethyl cellulose (CMC). With increasing functionalization, CMC gains the potential for self-association, differentiating itself from MCC. The present study explores the preparation of aerogels from MCC and CMC, comparing performance with and without significant self-association potential, and more broadly evaluating the production of low density structural materials from renewable cellulose. It was observed that the self-association present in CMC substantially increases aerogel mechanical properties when compared those of non-interactive MCC. Aspect ratio is proposed to also be an import parameter in the structure–property relationship for these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hrubesh LW, Poco JF (1995) Thin aerogel films for optical, thermal, acoustic and electronic applications. J Non-Cryst Solid 188:46–53

    Article  CAS  Google Scholar 

  2. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741

    Article  CAS  Google Scholar 

  3. Schubert U, Husing N (1998) Aerogels–airy materials: chemistry, structure, and properties. Angrew Chem Int Ed 37:22–45

    Article  Google Scholar 

  4. Gutiérrez MC, Ferrer ML, Monte F (2008) Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem Mater 20(3):634–648

    Google Scholar 

  5. Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solid 225:335–342

    Article  CAS  Google Scholar 

  6. Bandi S, Bell M, Schiraldi DA (2005) Temperature-responsive clay aerogel−polymer composites. Macromolecules 38:9216–9220

    Article  CAS  Google Scholar 

  7. Horga R, Renzo FD, Quignard F (2007) Photoluminescent porous alginate hybrid materials containing lanthanide ions. Appl Catal A 325:251–255

    Article  CAS  Google Scholar 

  8. Valentin R, Horga R, Bonelli B, Garrone E, Renzo FD, Quignard F (2006) FTIR spectroscopy of NH3 on acidic and ionotropic alginate aerogels. Biomacromolecules 7:877–882

    Article  CAS  Google Scholar 

  9. Chang X, Chen D, Jiao X (2008) Chitosan-based aerogels with high adsorption performance. J Phys Chem B 112:7721–7725

    Article  CAS  Google Scholar 

  10. Cram DJ, Hammond GS (1964) Organic chemistry, 2nd edn. McGraw-Hill, New York, p 695

    Google Scholar 

  11. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, volume 1: fundamentals and analytical methods. Wiley-VCH, Germany

    Google Scholar 

  12. Milford H, Gerald B, Vesselin M (2001) US Patent 6 228 213

  13. Schilling SL (1992) Kirk-Othmer encyclopedia of chemical technology, vol 5, 4th edn. Wiley, New York, p 482

  14. Plunguin M (1943) Cellulose chemistry. Chemical Publishing Co., Inc, Brooklyn

    Google Scholar 

  15. Shlieout G, Arnold K, Muller G (2002) Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization. AAPS PharmSciTech 3(2):1–10 (article 11)

    Google Scholar 

  16. Hasani M, Westman G (2007) New coupling reagents for homogeneous esterification of cellulose. Cellulose 14:347–356

    Article  CAS  Google Scholar 

  17. Kulpinski P (2007) Cellulose fibers modified by hydrophobic-type polymer. J Appl Polym Sci 104:398–409

    Article  CAS  Google Scholar 

  18. Ali A, El-Rehim H, Kamal H, Hegazy D (2008) Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as site specific delivery system. J Macromol Sci A 45:628–634

    Article  Google Scholar 

  19. Xiao FL, Yun LG, Dong ZY, Zhi L, Kang DY (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79:1324–1335

    Article  Google Scholar 

  20. Khan F, Pilpel N (1987) An investigation of moisture sorption in microcrystalline cellulose using sorption isotherms and dielectric response. Powder Technol 50:239

    Google Scholar 

  21. Bandi S, Schiraldi DA (2006) Glass transition behavior of clay aerogel/poly(vinyl alcohol) composites. Macromolecules 39:6537–6545

    Article  CAS  Google Scholar 

  22. Capitani D, Porro F, Segre AL (2002) High field NMR analysis of the degree of substitution in carboxymethyl cellulose sodium salt. Carbohydr Polym 42:283–286

    Article  Google Scholar 

  23. Somlai LS, Bandi SA, Schiraldi DA, Mathias LJ (2006) Facile processing of clays into organically-modified aerogels. AICHE J 52:1162–1168

    Article  CAS  Google Scholar 

  24. Gawryla M, van der Berg O, Weder C, Schiraldi DA (2009) Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub. J Mater Chem 19:2118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Schiraldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surapolchai, W., Schiraldi, D.A. The effects of physical and chemical interactions in the formation of cellulose aerogels. Polym. Bull. 65, 951–960 (2010). https://doi.org/10.1007/s00289-010-0306-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0306-x

Keywords

Navigation