Skip to main content

Advertisement

Log in

Persistence and extinction of population in reaction–diffusion–advection model with strong Allee effect growth

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A reaction–diffusion–advection equation with strong Allee effect growth rate is proposed to model a single species stream population in a unidirectional flow. Here random undirected movement of individuals in the environment is described by passive diffusion, and an advective term is used to describe the directed movement in a river caused by the flow. Under biologically reasonable boundary conditions, the existence of multiple positive steady states is shown when both the diffusion coefficient and the advection rate are small, which lead to different asymptotic behavior for different initial conditions. On the other hand, when the advection rate is large, the population becomes extinct regardless of initial condition under most boundary conditions. It is shown that the population persistence or extinction depends on Allee threshold, advection rate, diffusion coefficient and initial conditions, and there is also rich transient dynamical behavior before the eventual population persistence or extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ai S-B, Chen X-F, Hastings SP (2006) Layers and spikes in non-homogeneous bistable reaction–diffusion equations. Trans Am Math Soc 358(7):3169–3206

    Article  MathSciNet  MATH  Google Scholar 

  • Alikakos ND, Bates PW, Fusco G (1993) Solutions to the nonautonomous bistable equation with specified Morse index. I. Existence. Trans Am Math Soc 340(2):641–654

    MathSciNet  MATH  Google Scholar 

  • Allee WC (1931) Animal aggregations. A study in general sociology. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Amann H (1976) Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev 18(4):620–709

    Article  MathSciNet  MATH  Google Scholar 

  • Ambrosetti A, Rabinowitz PH (1973) Dual variational methods in critical point theory and applications. J Funct Anal 14:349–381

    Article  MathSciNet  MATH  Google Scholar 

  • Belgacem F, Cosner C (1995) The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environments. Can Appl Math Quart 3(4):379–397

    MathSciNet  MATH  Google Scholar 

  • Brashares JS, Werner JR, Sinclair ARE (2010) Social ‘meltdown’ in the demise of an island endemic: Allee effects and the Vancouver Island marmot. J Anim Ecol 79(5):965–973

    Article  Google Scholar 

  • Cantrell RS, Cosner C (2003) Spatial ecology via reaction–diffusion equations. Wiley series in mathematical and computational biology. Wiley, Chichester

    MATH  Google Scholar 

  • Cantrell RS, Cosner C, Lou Y (2006) Movement toward better environments and the evolution of rapid diffusion. Math Biosci 204(2):199–214

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell RS, Cosner C, Lou Y (2007) Advection-mediated coexistence of competing species. Proc R Soc Edinb Sect A 137(3):497–518

    Article  MathSciNet  MATH  Google Scholar 

  • Carr J, Pego RL (1989) Metastable patterns in solutions of \(u_t=\epsilon ^2u_{xx}-f(u)\). Commun Pure Appl Math 42(5):523–576

    Article  MATH  MathSciNet  Google Scholar 

  • Chen X-F, Hambrock R, Lou Y (2008) Evolution of conditional dispersal: a reaction–diffusion–advection model. J Math Biol 57(3):361–386

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X-F, Lam K-Y, Lou Y (2012) Dynamics of a reaction–diffusion–advection model for two competing species. Discrete Contin Dyn Syst 32(11):3841–3859

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X-F, Lou Y (2008) Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model. Indiana Univ Math J 57(2):627–658

    Article  MathSciNet  MATH  Google Scholar 

  • Coddington EA, Levinson N (1955) Theory of ordinary differential equations. McGraw-Hill Book Company Inc, New York

    MATH  Google Scholar 

  • Cosner C, Lou Y (2003) Does movement toward better environments always benefit a population? J Math Anal Appl 277(2):489–503

    Article  MathSciNet  MATH  Google Scholar 

  • Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Cui R-H, Lam K-Y, Lou Y (2017) Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J Differ Equ 263(4):2343–2373

    Article  MathSciNet  MATH  Google Scholar 

  • Dancer EN, Schmitt K (1987) On positive solutions of semilinear elliptic equations. Proc Am Math Soc 101(3):445–452

    Article  MathSciNet  MATH  Google Scholar 

  • De Roos AM, Persson L (2002) Size-dependent life-history traits promote catastrophic collapses of top predators. Proc Natl Acad Sci USA 99(20):12907–12912

    Article  Google Scholar 

  • Du Y-H, Matano H (2010) Convergence and sharp thresholds for propagation in nonlinear diffusion problems. J Eur Math Soc 12(2):279–312

    Article  MathSciNet  MATH  Google Scholar 

  • Epstein IR, Pojman JA (1998) An introduction to nonlinear chemical dynamics: oscillations, waves, patterns, and chaos. Oxford University Press, Oxford

    Google Scholar 

  • Fusco G, Hale JK (1989) Slow-motion manifolds, dormant instability, and singular perturbations. J Dyn Differ Equ 1(1):75–94

    Article  MathSciNet  MATH  Google Scholar 

  • Fusco G, Hale JK, Xun J-P (1996) Traveling waves as limits of solutions on bounded domains. SIAM J Math Anal 27(6):1544–1558

    Article  MathSciNet  MATH  Google Scholar 

  • Gascoigne J, Lipcius RN (2004) Allee effects in marine systems. Mar Ecol Progr Ser 269:49–59

    Article  Google Scholar 

  • Gascoigne JC, Lipcius RN (2004) Allee effects driven by predation. J Appl Ecol 41(5):801–810

    Article  Google Scholar 

  • Hadeler KP, Rothe F (1975) Travelling fronts in nonlinear diffusion equations. J Math Biol 2(3):251–263

    Article  MathSciNet  MATH  Google Scholar 

  • Hale JK, Sakamoto K (1988) Existence and stability of transition layers. Jpn J Appl Math 5(3):367–405

    Article  MathSciNet  MATH  Google Scholar 

  • Henry D (1981) Geometric theory of semilinear parabolic equations. Lecture notes in mathematics, vol 840. Springer, Berlin

    Book  Google Scholar 

  • Hsu S-B, Lou Y (2010) Single phytoplankton species growth with light and advection in a water column. SIAM J Appl Math 70(8):2942–2974

    Article  MathSciNet  MATH  Google Scholar 

  • Huang Q-H, Jin Y, Lewis MA (2016) \(R_0\) analysis of a Benthic-drift model for a stream population. SIAM J Appl Dyn Syst 15(1):287–321

    Article  MathSciNet  MATH  Google Scholar 

  • Huisman J, Arrayás M, Ebert U, Sommeijer B (2002) How do sinking phytoplankton species manage to persist? Am Nat 159(3):245–254

    Article  Google Scholar 

  • Hutson V, Martinez S, Mischaikow K, Vickers GT (2003) The evolution of dispersal. J Math Biol 47(6):483–517

    Article  MathSciNet  MATH  Google Scholar 

  • Jacobsen J, Jin Y, Lewis MA (2015) Integrodifference models for persistence in temporally varying river environments. J Math Biol 70(3):549–590

    Article  MathSciNet  MATH  Google Scholar 

  • Jin Y, Hilker FM, Steffler PM, Lewis MA (2014) Seasonal invasion dynamics in a spatially heterogeneous river with fluctuating flows. Bull Math Biol 76(7):1522–1565

    Article  MathSciNet  MATH  Google Scholar 

  • Jin Y, Lewis MA (2011) Seasonal influences on population spread and persistence in streams: critical domain size. SIAM J Appl Math 71(4):1241–1262

    Article  MathSciNet  MATH  Google Scholar 

  • Jin Y, Lewis MA (2012) Seasonal influences on population spread and persistence in streams: spreading speeds. J Math Biol 65(3):403–439

    Article  MathSciNet  MATH  Google Scholar 

  • Jin Y, Lutscher F, Pei Y (2017) Meandering rivers: how important is lateral variability for species persistence? Bull Math Biol 79(12):2954–2985

    Article  MathSciNet  MATH  Google Scholar 

  • Jordan-Cooley WC, Lipcius RN, Shaw LB, Shen J, Shi J-P (2011) Bistability in a differential equation model of oyster reef height and sediment accumulation. J Theor Biol 289:1–11

    Article  MathSciNet  MATH  Google Scholar 

  • Keitt TH, Lewis MA, Holt RD (2001) Allee effects, invasion pinning, and species’ borders. Am Nat 157(2):203–216

    Article  Google Scholar 

  • Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77(7):2027–2042

    Article  Google Scholar 

  • Kramer AM, Dennis B, Liebhold AM, Drake JM (2009) The evidence for Allee effects. Popul Ecol 51(3):341–354

    Article  Google Scholar 

  • Lam K-Y (2011) Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model. J Differ Equ 250(1):161–181

    Article  MathSciNet  MATH  Google Scholar 

  • Lam K-Y (2012) Limiting profiles of semilinear elliptic equations with large advection in population dynamics II. SIAM J Math Anal 44(3):1808–1830

    Article  MathSciNet  MATH  Google Scholar 

  • Lam KY, Lou Y, Lutscher F (2015) Evolution of dispersal in closed advective environments. J Biol Dyn 9(suppl. 1):188–212

    Article  MathSciNet  Google Scholar 

  • Lam KY, Lou Y, Lutscher F (2016) The emergence of range limits in advective environments. SIAM J Appl Math 76(2):641–662

    Article  MathSciNet  MATH  Google Scholar 

  • Lam K-Y, Ni W-M (2010) Limiting profiles of semilinear elliptic equations with large advection in population dynamics. Discrete Contin Dyn Syst 28(3):1051–1067

    Article  MathSciNet  MATH  Google Scholar 

  • Lewis MA, Kareiva P (1993) Allee dynamics and the spread of invading organisms. Theor Popul Biol 43(2):141–158

    Article  MATH  Google Scholar 

  • Liu G-Q, Wang Y-W, Shi J-P (2009) Existence and nonexistence of positive solutions of semilinear elliptic equation with inhomogeneous strong Allee effect. Appl Math Mech Engl Ed 30(11):1461–1468

    Article  MathSciNet  MATH  Google Scholar 

  • Lou Y, Lutscher F (2014) Evolution of dispersal in open advective environments. J Math Biol 69(6–7):1319–1342

    Article  MathSciNet  MATH  Google Scholar 

  • Lou Y, Xiao DM, Zhou P (2016) Qualitative analysis for a Lotka–Volterra competition system in advective homogeneous environment. Discrete Contin Dyn Syst 36(2):953–969

    MathSciNet  MATH  Google Scholar 

  • Lou Y, Zhao X-Q, Zhou P (2019) Global dynamics of a Lotka–Volterra competition–diffusion–advection system in heterogeneous environments. J Math Pures Appl 9(121):47–82

    Article  MathSciNet  MATH  Google Scholar 

  • Lou Y, Zhou P (2015) Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions. J Differ Equ 259(1):141–171

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher F, Lewis MA, McCauley E (2006) Effects of heterogeneity on spread and persistence in rivers. Bull Math Biol 68(8):2129–2160

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher F, Nisbet RM, Pachepsky E (2010) Population persistence in the face of advection. Theor Ecol 3(4):271–284

    Article  Google Scholar 

  • Lutscher F, Pachepsky E, Lewis MA (2005) The effect of dispersal patterns on stream populations. SIAM J Appl Math 65(4):1305–1327

    Article  MathSciNet  MATH  Google Scholar 

  • Maciel GA, Lutscher F (2015) Allee effects and population spread in patchy landscapes. J Biol Dyn 9(1):109–123

    Article  MathSciNet  Google Scholar 

  • Mckenzie HW, Jin Y, Jacobsen J, Lewis MA (2012) \(R_0\) analysis of a spatiotemporal model for a stream population. SIAM J Appl Dyn Syst 11(2):567–596

    Article  MathSciNet  MATH  Google Scholar 

  • Muratov CB, Zhong X (2013) Threshold phenomena for symmetric decreasing solutions of reaction–diffusion equations. NoDEA Nonlinear Differ Equ Appl 20(4):1519–1552

    Article  MathSciNet  MATH  Google Scholar 

  • Nakashima K (2003) Multi-layered stationary solutions for a spatially inhomogeneous Allen–Cahn equation. J Differ Equ 191(1):234–276

    Article  MathSciNet  MATH  Google Scholar 

  • Ni W-M (2011) The mathematics of diffusion, CBMS-NSF regional conference series in applied mathematics, vol 82. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Google Scholar 

  • Okubo A, Levin SA (2001) Diffusion and ecological problems: modern perspectives. Interdisciplinary applied mathematics, vol 14, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Ouyang TC, Shi J-P (1998) Exact multiplicity of positive solutions for a class of semilinear problems. J Differ Equ 146(1):121–156

    Article  MathSciNet  MATH  Google Scholar 

  • Pachepsky E, Lutscher F, Nisbet RM, Lewis MA (2005) Persistence, spread and the drift paradox. Theor Popul Biol 67(1):61–73

    Article  MATH  Google Scholar 

  • Pao CV (1992) Nonlinear parabolic and elliptic equations. Plenum Press, New York

    MATH  Google Scholar 

  • Prigogine I, Lefever R (1968) Symmetry breaking instabilities in dissipative systems. II. J Chem Phys 48(4):1698–1700

    Article  Google Scholar 

  • Rabinowitz PH (1973/1974) Pairs of positive solutions of nonlinear elliptic partial differential equations. Indiana Univ Math J 23:173–186

  • Rabinowitz PH (1986) Minimax methods in critical point theory with applications to differential equations. CBMS regional conference series in mathematics, vol 65. American Mathematical Society, Providence

    Book  Google Scholar 

  • Ramirez JM (2012) Population persistence under advection–diffusion in river networks. J Math Biol 65(5):919–942

    Article  MathSciNet  MATH  Google Scholar 

  • Rowe S, Hutchings JA, Bekkevold D, Rakitin A (2004) Depensation, probability of fertilization, and the mating system of Atlantic cod (Gadus Morhua L.). ICES J Mar Sci 61(7):1144–1150

    Article  Google Scholar 

  • Sarhad J, Carlson R, Anderson KE (2014) Population persistence in river networks. J Math Biol 69(2):401–448

    Article  MathSciNet  MATH  Google Scholar 

  • Sattinger DH (1971/1972) Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ Math J 21:979–1000

  • Shi J-P, Shivaji R (2006) Persistence in reaction diffusion models with weak Allee effect. J Math Biol 52(6):807–829

    Article  MathSciNet  MATH  Google Scholar 

  • Smoller J (1983) Shock waves and reaction-diffusion equations. Grundlehren der Mathematischen Wissenschaften (Fundamental principles of mathematical science), vol 258. Springer, New York

    Google Scholar 

  • Speirs DC, Gurney WSC (2001) Population persistence in rivers and estuaries. Ecology 82(5):1219–1237

    Article  Google Scholar 

  • Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol Evol 14(10):401–405

    Article  Google Scholar 

  • Sullivan LL, Li B-T, Miller T, Neubert MG, Shaw AK (2017) Density dependence in demography and dispersal generates fluctuating invasion speeds. Proc Natl Acad Sci 114(19):5053–5058

    Article  Google Scholar 

  • Swift M, Lam K-Y, Shaw LB, Shi J-P (2018) Dispersal-induced global extinction in a two-patch model with Allee effect (preprint)

  • Vasilyeva O, Lutscher F (2010) Population dynamics in rivers: analysis of steady states. Can Appl Math Q 18(4):439–469

    MathSciNet  MATH  Google Scholar 

  • Vasilyeva O, Lutscher F (2012) Competition of three species in an advective environment. Nonlinear Anal Real World Appl 13(4):1730–1748

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J-F, Shi J-P, Wei J-J (2011) Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey. J Differ Equ 251(4–5):1276–1304

    Article  MathSciNet  MATH  Google Scholar 

  • Wang M-H, Kot M (2001) Speeds of invasion in a model with strong or weak Allee effects. Math Biosci 171(1):83–97

    Article  MathSciNet  MATH  Google Scholar 

  • Wang M-H, Kot M, Neubert MG (2002) Integrodifference equations, Allee effects, and invasions. J Math Biol 44(2):150–168

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao XQ, Zhou P (2016) On a Lotka–Volterra competition model: the effects of advection and spatial variation. Calc Var Partial Differ Equ 55(4):25 (Art. 73)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou P (2016) On a Lotka–Volterra competition system: diffusion vs advection. Calc Var Partial Differ Equ 55(6):29 (Art. 137)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou P, Xiao D-M (2018) Global dynamics of a classical Lotka–Volterra competition–diffusion–advection system. J Funct Anal 275(2):356–380

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou P, Zhao XQ (2018) Evolution of passive movement in advective environments: general boundary condition. J Differ Equ 264(6):4176–4198

    Article  MathSciNet  MATH  Google Scholar 

  • Zlatoš A (2006) Sharp transition between extinction and propagation of reaction. J Am Math Soc 19(1):251–263

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank two anonymous reviewers for their very careful readings and helpful suggestions which significantly improved the initial draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by a grant from China Scholarship Council, NSF Grant DMS-1715651.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shi, J. & Wang, J. Persistence and extinction of population in reaction–diffusion–advection model with strong Allee effect growth. J. Math. Biol. 78, 2093–2140 (2019). https://doi.org/10.1007/s00285-019-01334-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-019-01334-7

Keywords

Mathematics Subject Classification

Navigation