Skip to main content
Log in

Stability and bifurcation analysis for a general nonlocal predator–prey system with top-hat kernel function

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the influence of the nonlocal intraspecific competition by the prey in a general predator–prey system on the stability and spatiotemporal dynamics, where the nonlocal kernel function is characterized by the top-hat function. It has been shown that when the nonlocal competition radius is sufficiently small, the nonlocal item has no impact on the stability of the spatially homogeneous steady state, but when the nonlocal competition radius is larger than some critical value, various types of spatiotemporal patterns occur via the bifurcation. The analytical conditions for the occurrence of Turing bifurcation, Hopf bifurcation and Turing–Hopf bifurcation are clearly determined. The spatially inhomogeneous steady states and inhomogeneous periodic patterns are found for the nonlocal Rosenzweig–MacArthur and Lotka–Volterra models with the top-hat kernel function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable. No datasets were generated or analyzed during the study.

References

  1. Banerjee, M., Kuznetsov, M., Udovenko, O., Volpert, V.: Nonlocal reaction–diffusion equations in biomedical applications. Acta. Biotheor. 70(2), 1–28 (2022)

    Article  Google Scholar 

  2. Banerjee, M., Mukherjee, N., Volpert, V.: Prey–predator model with a nonlocal bistable dynamics of prey. Mathematics 6(3), 41 (2018)

    Article  Google Scholar 

  3. Banerjee, M., Volpert, V.: Spatio-temporal pattern formation in Rosenzweig–Macarthur model: effect of nonlocal interactions. Ecol. Complex. 30, 2–10 (2017)

    Article  Google Scholar 

  4. Banerjee, M., Zhang, L.: Stabilizing role of nonlocal interaction on spatio-temporal pattern formation. Math. Model. Nat. Phenom. 11(5), 103–118 (2016)

    Article  MathSciNet  Google Scholar 

  5. Chen, S., Yu, J.: Stability and bifurcation on predator–prey system with nonlocal prey competition. Discret. Contin. Dyn. Syst. 38(1), 43–62 (2018)

    Article  MathSciNet  Google Scholar 

  6. Cintra, W., Molina-Becerra, M., Suarez, A.: The Lotka–Volterra models with non-local reaction terms. Commun. Pure Appl. Anal. 21(11), 3865–3886 (2022)

    Article  MathSciNet  Google Scholar 

  7. Djilali, S.: Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition. Math. Methods Appl. Sci. 43(5), 2233–2250 (2020)

    Article  MathSciNet  Google Scholar 

  8. Fagan, W.F., Gurarie, E., Bewick, S., Howard, A., Cantrell, R.S., Cosner, C.: Perceptual ranges, information gathering, and foraging success in dynamic landscapes. Am. Nat. 189(5), 474–489 (2017)

    Article  Google Scholar 

  9. Furter, J., Grinfeld, M.: Local vs. non-local interactions in population dynamics. J. Math. Biol. 27(1), 65–80 (1989)

    Article  MathSciNet  Google Scholar 

  10. Gao, J., Guo, S.: Patterns in a modified Leslie–Gower model with Beddington–DeAngelis functional response and nonlocal prey competition. Int. J. Bifurc. Chaos 30(5), 2050074 (2020)

    Article  MathSciNet  Google Scholar 

  11. Geng, D., Jiang, W., Lou, Y., Wang, H.: Spatiotemporal patterns in a diffusive predator–prey system with nonlocal intraspecific prey competition. Stud. Appl. Math. 148(1), 396–432 (2022)

    Article  MathSciNet  Google Scholar 

  12. Genieys, S., Volpert, V., Auger, P.: Pattern and waves for a model in population dynamics with nonlocal consumption of resources. Math. Model. Nat. Phenom. 1(1), 63–80 (2006)

    Article  MathSciNet  Google Scholar 

  13. Giunta, V., Hillen, T., Lewis, M., Potts, J.R.: Local and global existence for nonlocal multispecies advection–diffusion models. SIAM J. Appl. Dyn. Syst. 21(3), 1686–1708 (2022)

    Article  MathSciNet  Google Scholar 

  14. Jiang, J., Yu, P.: Multistable phenomena involving equilibria and periodic motions in predator–prey systems. Int. J. Bifurc. Chaos 27(03), 1750043 (2017)

    Article  MathSciNet  Google Scholar 

  15. Liu, Y., Duan, D., Niu, B.: Spatiotemporal dynamics in a diffusive predator prey model with group defense and nonlocal competition. Appl. Math. Lett. 103, 106175 (2020)

    Article  MathSciNet  Google Scholar 

  16. Manna, K., Volpert, V., Banerjee, M.: Pattern formation in a three-species cyclic competition model. Bull. Math. Biol. 83(5), 52 (2021)

    Article  MathSciNet  Google Scholar 

  17. Merchant, S.M., Nagata, W.: Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition. Theor. Popul. Biol. 80(4), 289–297 (2011)

    Article  Google Scholar 

  18. Pal, S., Ghorai, S., Banerjee, M.: Analysis of a prey–predator model with non-local interaction in the prey population. Bull. Math. Biol. 80(4), 906–925 (2018)

    Article  MathSciNet  Google Scholar 

  19. Pal, S., Ghorai, S., Banerjee, M.: Effect of kernels on spatio-temporal patterns of a non-local prey–predator model. Math. Biosci. 310, 96–107 (2019)

    Article  MathSciNet  Google Scholar 

  20. Peng, Y., Zhang, G.: Dynamics analysis of a predator–prey model with herd behavior and nonlocal prey competition. Math. Comput. Simul. 170, 366–378 (2020)

    Article  MathSciNet  Google Scholar 

  21. Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator–prey interactions. Am. Nat. 97(895), 209–223 (1963)

    Article  Google Scholar 

  22. Samanta, G.: Deterministic, Stochastic and Thermodynamic Modelling of some Interacting Species. Springer, Berlin (2021)

    Book  Google Scholar 

  23. Segal, B., Volpert, V., Bayliss, A.: Pattern formation in a model of competing populations with nonlocal interactions. Physica D 253, 12–22 (2013)

    Article  MathSciNet  Google Scholar 

  24. Shen, H., Song, Y., Wang, H.: Bifurcations in a diffusive resource-consumer model with distributed memory. J. Differ. Equ. 347, 170–211 (2023)

    Article  MathSciNet  Google Scholar 

  25. Shen, Z., Liu, Y., Wei, J.: Double Hopf bifurcation in nonlocal reaction-diffusion system with spatial average kernel. Discrete Contin. Dyn. Syst. Ser. B 28(4), 2424–2462 (2022)

    Article  MathSciNet  Google Scholar 

  26. Shi, J., Wang, C., Wang, H.: Diffusive spatial movement with memory and maturation delays. Nonlinearity 32(9), 3188–3208 (2019)

    Article  MathSciNet  Google Scholar 

  27. Shi, J., Wang, C., Wang, H., Yan, X.: Diffusive spatial movement with memory. J. Dyn. Differ. Equ. 32(2), 979–1002 (2020)

    Article  MathSciNet  Google Scholar 

  28. Shi, Q., Shi, J., Song, Y.: Effect of spatial average on the spatiotemporal pattern formation of reaction–diffusion systems. J. Dyn. Differ. Equ. 34(3), 2123–2156 (2022)

    Article  MathSciNet  Google Scholar 

  29. Shi, Q., Song, Y.: Spatiotemporal pattern formation in a pollen tube model with nonlocal effect and time delay. Chaos Solitons Fractals 165(1), 112798 (2022)

    Article  MathSciNet  Google Scholar 

  30. Song, Y., Shi, J., Wang, H.: Spatiotemporal dynamics of a diffusive consumer-resource model with explicit spatial memory. Stud. Appl. Math. 148(1), 373–395 (2022)

    Article  MathSciNet  Google Scholar 

  31. Song, Y., Shi, Q.: Stability and bifurcation analysis in a diffusive predator–prey model with delay and spatial average. Math. Methods Appl. Sci. 46, 5561–5584 (2023)

    Article  MathSciNet  Google Scholar 

  32. Song, Y., Wang, H., Wang, J.: Cognitive consumer-resource dynamics with nonlocal perception. J. Nonlinear Sci. (2023) (in press)

  33. Wang, H., Salmaniw, Y.: Open problems in pde models for knowledge-based animal movement via nonlocal perception and cognitive mapping. J. Math. Biol. 86(5), 71 (2023)

    Article  MathSciNet  Google Scholar 

  34. Wu, S., Song, Y.: Stability and spatiotemporal dynamics in a diffusive predator–prey model with nonlocal prey competition. Nonlinear Anal. Real World Appl. 48, 12–39 (2019)

    Article  MathSciNet  Google Scholar 

  35. Wu, S., Song, Y., Shi, Q.: Normal forms of double Hopf bifurcation for a reaction–diffusion system with delay and nonlocal spatial average and applications. Comput. Math. Appl. 119, 174–192 (2022)

    Article  MathSciNet  Google Scholar 

  36. Yan, S., Jia, D., Zhang, T., Yuan, S.: Pattern dynamics in a diffusive predator–prey model with hunting cooperations. Chaos Solitons Fractals 130, 109428 (2020)

    Article  MathSciNet  Google Scholar 

  37. Yang, R., Nie, C., Jin, D.: Spatiotemporal dynamics induced by nonlocal competition in a diffusive predator–prey system with habitat complexity. Nonlinear Dyn. 110(1), 879–900 (2022)

    Article  Google Scholar 

  38. Yang, R., Song, Q., An, Y.: Spatiotemporal dynamics in a predator–prey model with functional response increasing in both predator and prey densities. Mathematics 10(1), 17 (2021)

  39. Yang, R., Wang, F., Jin, D.: Spatially inhomogeneous bifurcating periodic solutions induced by nonlocal competition in a predator–prey system with additional food. Math. Methods Appl. Sci. 45(16), 9967–9978 (2022)

    Article  MathSciNet  Google Scholar 

  40. Yuan, S., Xu, C., Zhang, T.: Spatial dynamics in a predator–prey model with herd behavior. Chaos 23(3), 033102 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewer’s valuable comments, which led to the improvement of this article.

Funding

This work is partially supported by the grants from Natural Science Foundation of Zhejiang Province (No. LZ23A010001) and National Natural Science Foundation of China (Nos. 12371166 and 12071105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Song, Y. Stability and bifurcation analysis for a general nonlocal predator–prey system with top-hat kernel function. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09484-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09484-0

Keywords

Mathematics Subject Classification

Navigation