Skip to main content
Log in

Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this work we study the asymptotic behaviour of the Kermack–McKendrick reaction-diffusion system in a periodic environment with non-diffusive susceptible population. This problem was proposed by Kallen et al. as a model for the spatial spread for epidemics, where it can be reasonable to assume that the susceptible population is motionless. For arbitrary dimensional space we prove that large classes of solutions of such a system have an asymptotic spreading speed in large time, and that the infected population has some pulse-like asymptotic shape. The analysis of the one-dimensional problem is more developed, as we are able to uncover a much more accurate description of the profile of solutions. Indeed, we will see that, for some initially compactly supported infected population, the profile of the solution converges to some pulsating travelling wave with minimal speed, that is to some entire solution moving at a constant positive speed and whose profile’s shape is periodic in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson RM, Jackson HC, May RM, Smith AM (1981) Population dynamics of fox rabies in Europe. Nature 289:765–771

    Article  Google Scholar 

  • Beaumont C, Burie J-B, Ducrot A, Zongo P (2012) Propagation of Salmonella within an industrial hens house. SIAM J Appl Math 72:1113–1148

    Article  MATH  MathSciNet  Google Scholar 

  • Berestycki H, Hamel F, Kiselev A, Ryzhik L (2005) Quenching and propagation in KPP reaction-diffusion equations with a heat loss. Arch Ration Mech Anal 178:57–80

    Article  MATH  MathSciNet  Google Scholar 

  • Berestycki H, Hamel F, Nadin G (2008) Asymptotic spreading in heterogeneous diffusive media. J Funct Anal 255:2146–2189

    Article  MATH  MathSciNet  Google Scholar 

  • Berestycki H, Hamel F, Roques L (2005) Analysis of the periodically fragmented environment model: I—species persistence. J Math Biol 51:75–113

    Article  MATH  MathSciNet  Google Scholar 

  • Berestycki H, Hamel F, Roques L (2005) Analysis of the periodically fragmented environment model: II-Biological invasions and pulsating travelling fronts. J Math Pures Appl 84:1101–1146

    Article  MATH  MathSciNet  Google Scholar 

  • Berestycki H, Hamel F, Rossi L (2007) Liouville type results for semilinear elliptic equations in unbounded domains. Annali Mat Pura Appl 186:469–507

    Article  MATH  MathSciNet  Google Scholar 

  • Bramson M (1983) Convergence of solutions of the Kolmogorov equation to travelling waves. Mem Am Math Soc 44(285): iv+190 pp

    Google Scholar 

  • Britton NF (1986) Reaction-diffusion equations and their applications to biology. Academic Press, London

    MATH  Google Scholar 

  • Britton NF (1991) An integral for a reaction-diffusion system. Appl Math Lett 4:43–47

    Article  MATH  MathSciNet  Google Scholar 

  • Diekmann O (1977) Limiting behaviour in an epidemic model. Nonlinear Anal TMA 1:459–470

    Article  MATH  MathSciNet  Google Scholar 

  • Diekmann O (1978) Thresholds and travelling waves for the geographical spread of infection. J Math Biol 6:109–130

    Article  MATH  MathSciNet  Google Scholar 

  • Ducrot A, Magal P (2009) Travelling wave solutions for an infection-age structured model with diffusion. Proc Roy Soc Edinb Sect A Math 139:459–482

    Article  MATH  MathSciNet  Google Scholar 

  • Ducrot A, Magal P, Ruan S (2010) Travelling wave solutions in multi-group age-structured epidemic models. Arch Ration Mech Anal 195:311–331

    Article  MATH  MathSciNet  Google Scholar 

  • Giletti T (2010) KPP reaction-diffusion equations with a non-linear loss inside a cylinder. Nonlinearity 23:2307–2332

    Article  MATH  MathSciNet  Google Scholar 

  • Giletti T (2013) Convergence to pulsating traveling waves with minimal speed in some KPP heterogeneous problems, preprint arXiv:1304.0832

  • Hamel F, Nolen J, Roquejoffre J-M, Ryzhik L (2012) The logarithmic delay of KPP fronts in a periodic medium, preprint arXiv:1211.6173

  • Hamel F, Ryzhik L (2010) Travelling waves for the thermodiffusive system with arbitrary Lewis numbers. Arch Ration Mech Anal 195:923–952

    Article  MATH  MathSciNet  Google Scholar 

  • Hosono Y, Ilyas B (1995) Traveling waves for a simple diffusive epidemic model. Math Models Meth Appl Sci 5:935–966

    Article  MATH  MathSciNet  Google Scholar 

  • Kallen A (1984) Thresholds and travelling waves in an epidemic model for rabies. Nonlinear Anal Theor Meth Appl 8:851–856

    Article  MathSciNet  Google Scholar 

  • Kallen A, Arcuri P, Murray JD (1985) A simple model for the spatial spread of rabies. J Theor Biol 116:377–393

    Article  MathSciNet  Google Scholar 

  • Kermack WO, McKendrick AG (1927) A contribution to the mathematic theory of epidemics. Proc Roy Soc Lond 115:700–721

    Article  MATH  Google Scholar 

  • Lau K-S (1985) On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov. J Differ Equ 59(1):44–70

    Article  MATH  Google Scholar 

  • Murray JD (2003) Mathematical biology, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  • Murray JD, Stanley EA, Brown DL (1986) On the spatial spread of rabies among foxes. Pro. Roy Soc Lond B 229:111–150

    Article  Google Scholar 

  • Nadin G (2010) The effect of the Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric operator. SIAM J Math Anal 41:2388–2406

    Article  MATH  MathSciNet  Google Scholar 

  • Rass L, Radcliffe J (2003) Spatial deterministic epidemics. In: Mathematical surveys and monographs, vol 102. AMS, Providence

  • Thieme HR (1977) A model for the spatial spread of an epidemic. J Math Biol 4:337–351

    Article  MATH  MathSciNet  Google Scholar 

  • Thieme HR (2003) Mathematics in population biology. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Uchiyama K (1978) The behavior of solutions of some nonlinear diffusion equations for large time. J Math Kyoto Univ 18(3):453–508

    MATH  MathSciNet  Google Scholar 

  • Weinberger H (2002) On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J Math Biol 45:511–548

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Giletti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducrot, A., Giletti, T. Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population. J. Math. Biol. 69, 533–552 (2014). https://doi.org/10.1007/s00285-013-0713-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-013-0713-3

Keywords

Mathematical Subject Classification (2010)

Navigation