Skip to main content
Log in

A model for the spatial spread of an epidemic

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

We set up a deterministic model for the spatial spread of an epidemic. Essentially, the model consists of a nonlinear integral equation which has an unique solution. We show that this solution has a temporally asymptotic limit which describes the final state of the epidemic and is the minimal solution of another nonlinear integral equation. We outline the asymptotic behaviour of this minimal solution at a great distance from the epidemic's origin and generalize D. G. Kendall's pandemic threshold theorem (1957).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, N. T. J.: The Mathematical Theory of Epidemics. London: Griffin 1957.

    Google Scholar 

  • Bailey, N. T. J.: The Mathematical Theory of Infectious Diseases and its Applications. London: Griffin 1975.

    Google Scholar 

  • Bartlett, M. S.: Stochastic Population Models in Ecology and Epidemiology. London: Methuen 1960.

    Google Scholar 

  • Bohl, E.: Monotonie: Lösbarkeit und Numerik bei Operatorgleichungen. (Springer Tracts in Natural Philosophy, Vol. 25.) Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  • Cooke, K. L.: Functional-differential equations: some models and perturbation problems. Differential Equations and Dynamical Systems (Hale, J. K., LaSalle, J. P., eds.), pp. 167–183. New York: Academic Press 1967.

    Google Scholar 

  • Hoppensteadt, F.: An age dependent epidemic model. J. Franklin Institute 297, 325–333 (1974a).

    Google Scholar 

  • Hoppensteadt, F.: Thresholds for deterministic epidemics. Mathematical Problems in Biology. Conf., Univ. Victoria, Victoria, B. C., 1973 (Lecture Notes in Biomath., Vol. 2), pp. 96–101. Berlin-Heidelberg-New York: Springer 1974b.

    Google Scholar 

  • Hoppensteadt, F.: Mathematical Theories of Populations: Demographics, Genetics and Epidemics (Regional Conference Series in Applied Mathematics). Philadelphia: Siam 1975.

    Google Scholar 

  • Hoppensteadt, F., Waltman, P.: A problem in the theory of epidemics. Math. Biosci. 9, 71–91 (1970).

    Google Scholar 

  • Hoppensteadt, F., Waltman, P.: A problem in the theory of epidemics II. Math. Biosci. 12, 133–145 (1971).

    Google Scholar 

  • Kendall, D. G.: in discussion on Bartlett, M. S.: Measles periodicity and community size. J. R. statist. Soc. Ser. A 120, 48–70 (1957).

    Google Scholar 

  • Kendall, D. G.: Mathematical models of the spread of infection. Mathematics and Computer Science in Biology and Medicine, pp. 213–225. London: H. M. S. O. 1965.

    Google Scholar 

  • Krasnosel'skii, M. A.: Positive Solutions of Operator Equations. Groningen: Noordhoff 1964.

    Google Scholar 

  • Laetsch, T.: Nonlinear eigenvalue problems with monotonically compact operators. Aequationes Math. 13, 61–76 (1975).

    Google Scholar 

  • Mollison, D.: Possible velocities for a simple epidemic. Adv. Appl. Prob. 4, 233–257 (1972a).

    Google Scholar 

  • Mollison, D.: The rate of spatial propagation of simple epidemics. Proc. Sixth Berkeley Symp. Math. Statist. and Prob. 3, 579–614 (1972b).

    Google Scholar 

  • Noble, J. V.: Geographical and temporal development of plagues. Nature 250, 726–729 (1974).

    Google Scholar 

  • Radcliffe, J.: The initial geographical spread of host-vector and carrier-borne epidemics. J. Appl. Prob. 10, 703–717 (1973).

    Google Scholar 

  • Radcliffe, J.: The severity of a viral host-vector epidemic. J. Appl. Prob. 13, 791–794 (1976).

    Google Scholar 

  • Sattinger, D. H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. j. 21, 979–1000 (1972).

    Google Scholar 

  • Thieme, H. R.: The asymptotic behaviour of solutions of nonlinear integral equations (to appear).

  • Waltman, P.: Deterministic Threshold Models in the Theory of Epidemics (Lecture Notes in Biomathematics, Vol. 1.). Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  • Wilson, L. O.: An epidemic model involving a threshold. Math. Biosci. 15, 109–121 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thieme, H.R. A model for the spatial spread of an epidemic. J. Math. Biol. 4, 337–351 (1977). https://doi.org/10.1007/BF00275082

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275082

Keywords

Navigation