Skip to main content

Advertisement

Log in

Evaluation of the Co-inoculation Effect of Rhizobium and Plant Growth Promoting Non-rhizobial Endophytes on Vigna radiata

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A unique feature of leguminous plants is the establishment of symbiotic bacterial genera inside root or stem nodules that is being recently re-evaluated for investigating the micro-flora discrete to nitrogen fixation. The present research was carried out to evaluate non-rhizobial endophytes and Rhizobium from root nodules of Vigna radiata and ascertain their co-inoculation effect in pot and field conditions. Each strain displayed one or more plant growth-promoting behaviors in varying degrees. The ability to fix nitrogen was observed in all strains; however, a noticeable enhancement in nitrogen fixation was observed when all three strains were co-inoculated. All three strains were found to possess the nifH gene, which plays a key role in the nitrogen fixation process. However, only Rhizobium sp. AAU B3 also had the nodD gene present. Furthermore, combinations of all three strains produced the highest levels of phosphate solubilization, potash mobilisation, Indole Acetic Acid (IAA), and the stress-relieving enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase. Interestingly, the succession of the root nodule formation within root hairs seedlings was observed under a fluorescence microscope and two NRE were found to be located inside the root nodules, indicating that they are endophytic. Additionally, a pot and field investigation revealed that the combination of chosen Rhizobium and NRE strains had a favorable impact on the growth and yield characteristics of a green gram. Selected bio-inoculants can reduce the utilization of synthetic fertilizers by 75%, which might lead to the restoration of the soil’s health. Therefore, these bio-inoculants might be explored commercially for sustainable agriculture production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Agriculture Nutrient Management and Fertilizer. https://www.epa.gov/agriculture/agriculture-nutrient-management-and-fertilizer. Accessed on 4 Dec 2022.

  2. Aguilar-Rivera N, Michel-Cuello C, Cárdenas-González JF (2019) Green revolution and sustainable development. In: Leal Filho W (ed) Encyclopedia of sustainability in higher education. Springer, Cham

    Google Scholar 

  3. Eliazer Nelson ARL, Ravichandran K, Antony U (2019) The impact of the green revolution on indigenous crops of India. J Ethn Food 6(8):1–10. https://doi.org/10.1186/s42779-019-0011-9

    Article  Google Scholar 

  4. Davies WP (2003) An historical perspective from the green revolution to the gene revolution. Nutr Rev 61(6):S124–S134. https://doi.org/10.1301/nr.2003.jun.S124-S134

    Article  PubMed  Google Scholar 

  5. Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci 109(31):12302–12308. https://doi.org/10.1073/pnas.0912953109

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ilahi H, Hidayat K, Adnan M, Rehman FU, Tahir R, Saeed MS, Shah SW, Toor MD (2020) Accentuating the impact of inorganic and organic fertilizers on agriculture crop production: a review. Ind J Pure App Biosci 9:36–45. https://doi.org/10.18782/2582-2845.8546

    Article  Google Scholar 

  7. Pahalvi HN, Rafiya L, Rashid S, Nisar B, Kamili AN (2021) Chemical fertilizers and their impact on soil health. In Microbiota Biofertilizers 2:1–20. https://doi.org/10.1007/978-3-030-61010-4_1

    Article  Google Scholar 

  8. Dahmani MA, Desrut A, Moumen B, Verdon J, Mermouri L, Kacem M, Coutos-Thévenot P, Kaid-Harche M, Bergès T, Vriet C (2020) Unearthing the plant growth-promoting traits of Bacillus megaterium RmBm31, an endophytic bacterium isolated from root nodules of Retama monosperma. Front Plant Sci 11:124. https://doi.org/10.3389/fpls.2020.00124

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tariq M, Hameed S, Yasmeen T, Ali A (2012) Non-rhizobial bacteria for improved nodulation and grain yield of mung bean [Vigna radiata L Wilczek]. Afri J Biotech 11(84):15012–15019. https://doi.org/10.5897/AJB11.3438

    Article  CAS  Google Scholar 

  10. Basbuga S, Basbuga S, Yayla F, Mahmoud AM, Can C (2021) Diversity of rhizobial and non-rhizobial bacteria nodulating wild ancestors of grain legume crop plants. Inter Microbiol 24(2):207–218. https://doi.org/10.1007/s10123-020-00158-6

    Article  CAS  Google Scholar 

  11. Reorienting India’s food basket: Act on pulses now. https://www.financialexpress.com/opinion/reorienting-indias-food-basket-act-on-pulses-now/1986610/ Accessed on 4 Dec 2022.

  12. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631. https://doi.org/10.1038/nrmicro954

    Article  CAS  PubMed  Google Scholar 

  13. Pandya M, Shalini R, Kumar GN (2013) Invasion of rhizobial infection thread by non-rhizobia for colonization of Vigna radiata root nodules. FEMS Microbiol Lett. https://doi.org/10.1111/1574-6968.12245

    Article  PubMed  Google Scholar 

  14. Muresu R, Polone E, Sulas L, Baldan B, Tondello A, Delogu G, Cappuccinelli P, Alberghini S, Benhizia Y, Benhizia H, Benguedoguar A, Mori B, Calamassi R, Dazzo F, Squartini A (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400. https://doi.org/10.1111/j.1574-6941.2007.00424.x

    Article  CAS  PubMed  Google Scholar 

  15. Zhao LF, Xua YJ, Lai XH (2018) Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian J Microbiol 49:269–278. https://doi.org/10.1016/j.bjm.2017.06.007

    Article  CAS  Google Scholar 

  16. Hansen BL, Pessotti RDC, Fischer MS, Collins A, El-Hifnawi L, Liu MD, Traxler MF (2020) Cooperation, competition, and specialized metabolism in a simplified root nodule microbiome. mBio 11:e01917-20. https://doi.org/10.1128/mBio.01917-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol 51(3):375–393. https://doi.org/10.1007/s00248-006-9025-0

    Article  PubMed  Google Scholar 

  18. Hoque MS, Broadhurst LM, Trall PH (2011) Genetic characterization of root-nodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across south-eastern Australia. Int J Syst Evol Microbiol 61:299–309. https://doi.org/10.1099/ijs.0.021014-0

    Article  CAS  PubMed  Google Scholar 

  19. Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their infuence on host growth. Biol Fertil Soils 25:13–19. https://doi.org/10.1007/s003740050273

    Article  Google Scholar 

  20. Trujillo ME, Kroppenstedt RM, Schumann P, Carro L, Martinez-Molina E (2006) Micromonospora coriariae sp. nov., isolated from root nodules of Coriari amyrtifolia. Int J Syst Evol Microbiol 56:2381–2385. https://doi.org/10.1099/ijs.0.64449-0

    Article  CAS  PubMed  Google Scholar 

  21. Trujillo ME, Kroppenstedt RM, Fernandez-Molinero C, Schumann P, Martinez-Molina E (2007) Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 57:2799–2804. https://doi.org/10.1099/ijs.0.65192-0

    Article  CAS  PubMed  Google Scholar 

  22. Garcia LC, Martinez-Molina E, Trujillo ME (2010) Micromonosporapisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337. https://doi.org/10.1099/ijs.0.012708-0

    Article  Google Scholar 

  23. Menéndez E, Paço A (2020) Is the application of plant probiotic bacterial consortia always beneficial for plants? Exploring synergies between rhizobial and non-rhizobial bacteria and their effects on agro-economically valuable crops. Life 10(3):24. https://doi.org/10.3390/life10030024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Samavat S, Samavat S, Mafakheri S, Shakouri MJ (2012) Promoting common bean growth and nitrogen fixation by the co-inoculation of Rhizobium and Pseudomonas fluorescens isolates. Bulgarian J Agr Sci 18(3):387–395

    Google Scholar 

  25. Verma JP, Yadav J, Tiwari KN (2010) Application of Rhizobium sp BHURC01 and plant growth promoting rhizobactria on nodulation, plant biomass and yields of chickpea (Cicer arietinum L). Int J Agric Res 5(3):148–56. https://doi.org/10.3923/ijar.2010.148.156

    Article  CAS  Google Scholar 

  26. Lu J, Yang F, Wang S, Ma H, Liang J, Chen Y (2017) Co-existence of rhizobia and diverse non-rhizobial bacteria in the rhizosphere and nodules of Dalbergia odorifera seedlings inoculated with Bradyrhizobium elkanii, Rhizobium multihospitium–like and Burkholderia pyrrocinia–like strains. Front microbiol 8:2255. https://doi.org/10.3389/fmicb.2017.02255

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dhole A, Shelat H (2022) Non-rhizobial endophytes associated with nodules of vigna radiata L. and their combined activity with rhizobium sp. Curr Microbiol 79:103. https://doi.org/10.1007/s00284-022-02792-x

    Article  CAS  PubMed  Google Scholar 

  28. AOAC (1965) Official methods of analysis of the association of official agricultural chemists. 10th edn. pp 744–745.

  29. Stiles HR, Peterson WH, Fred EB (1926) A rapid method for the determination of sugar in bacterial cultures. J Bacteriol 12(6):427–439. https://doi.org/10.1128/jb.12.6.427-439.1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dhole A, Shelat H, Vyas R, Jhala Y, Bhange M (2016) Endophytic occupation of legume root nodules by nifH positive non-rhizobia and their efficacy in groundnut (Arachis hypogaea). Annals Microbiol 66(4):1397–1407. https://doi.org/10.1007/s13213-016-1227-1

    Article  CAS  Google Scholar 

  31. Wielbo J, Podleśna A, Kidaj D, Podleśny J, Skorupska A (2015) The diversity of pea microsymbionts in various types of soils and their effects on plant host productivity. Microbes Environ 30(3):254–261. https://doi.org/10.1264/jsme2.ME14141

    Article  PubMed  PubMed Central  Google Scholar 

  32. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifHgene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993. https://doi.org/10.1099/00221287-147-4-981

    Article  CAS  PubMed  Google Scholar 

  33. Taurian T, María SA, Jorge GA, María LT, Liliana L, Dayana P, Fernando I, Adriana F (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329:421–431. https://doi.org/10.1007/s11104-009-0168-x

    Article  CAS  Google Scholar 

  34. Setiawati TC, Mutmainnah L (2016) Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Agric Agric Sci Procedia 9:108–117. https://doi.org/10.1016/j.aaspro.2016.02.134

    Article  Google Scholar 

  35. Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61(2):793. https://doi.org/10.1128/aem.61.2.793-796.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Duan J, Müller KM, Charles TC, Vesely S, Glick BR (2009) 1- aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol 57(3):423–436. https://doi.org/10.1007/s00248-008-9407-6

    Article  CAS  PubMed  Google Scholar 

  37. Mukharjee C, Ray K (2015) An improved DAPI staining procedure for visualization of polyphosphate granules in cyanobacterial and microlagal cells. Protocol Exchange, Nature Publishing Group. https://doi.org/10.1038/protex.2015.066

    Article  Google Scholar 

  38. Agro-climatic information—Anand Agricultural University. http://www.aau.in/agro-climatic-information-16. Accessed on 24 April 2016

  39. Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42. https://doi.org/10.2307/3001478

    Article  Google Scholar 

  40. Etesami H, Adl SM (2020) Can interaction between silicon and non–rhizobial bacteria help in improving nodulation and nitrogen fixation in salinity–stressed legumes? A review. Rhizosphere 15:100229. https://doi.org/10.1016/j.rhisph.2020.100229

    Article  Google Scholar 

  41. De Meyer SE, De Beuf K, Vekeman B, Willems A (2015) A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Bio Biochem 83:1–11. https://doi.org/10.1016/j.soilbio.2015.01.002

    Article  CAS  Google Scholar 

  42. Purwaningsih S, Nditasari A, Antonius S (2019) Isolation, physiological characters and effectivity of bacterial isolates of root nodules from various plants on the growth of Vigna radiata L. IOP Conf. Ser Earth Environ Sci 308:012042. https://doi.org/10.1088/1755-1315/308/1/01204

    Article  Google Scholar 

  43. Favero VO, Carvalho RH, Motta VM, Leite AB, Coelho MR, Xavier GR, Rumjanek NG, Urquiaga S (2021) Bradyrhizobium as the only rhizobial inhabitant of mung bean (Vigna radiata) nodules in tropical soils: a strategy based on microbiome for improving biological nitrogen fixation using bio-products. Front Plant Sci 11:602645. https://doi.org/10.3389/fpls.2020.602645

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bai Y, Aoust FD, Smith BD (2002) Isolation of plant-growth promoting Bacillus strains from soybean root nodules. Can J Micro 48:230–238. https://doi.org/10.1139/w02-014

    Article  CAS  Google Scholar 

  45. Anandaraj B, Leema RDA (2010) Studies on the influence of bio inoculants (Pseudomonas fluorescens, Rhizobium sp, Bacillus megaterium) in Green gram. J Biosci Tech 1(2):95–99

    Google Scholar 

  46. Tokgoz S, Lakshman DK, Ghozlan MH, Pinar H, Roberts DP, Mitra A (2020) Soybean nodule-associated non-rhizobial bacteria inhibit plant pathogens and induce growth promotion in tomato. Plants 9:1494. https://doi.org/10.3390/plants9111494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Subba Rao NS (2018) Soil microbiology, 5th edn. MEDTECH, A division of Scientific International Pvt. Ltd. p 217–218.

  48. Hajjam Y, Alami IT, Udupa SM, Cherkaoui S (2016) Isolation and evaluation of phosphate solubilizing rhizobia from root nodules of faba bean (Vicia faba L) in Morocco. J Mater Environ Sci 7(11):4000–4010

    CAS  Google Scholar 

  49. Pandya M, Rajput M, Rajkumar S (2015) Exploring plant growth promoting potential of non rhizobial root nodules endophytes of V radiata. Microbiol 84(1):110–119. https://doi.org/10.1134/S0026261715010105

    Article  CAS  Google Scholar 

  50. Chinnaswamy A, Peña TC, Stoll A, Rojo DP, Bravo J, Rincón A, Lucas MM, Pueyo JJ (2018) A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Ann Appl Biol 172:295–308. https://doi.org/10.1111/aab.12420

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. R. V. Vyas for providing facilities to carry out all the experiments at Anand Agricultural University, Anand.

Funding

The research was funded by the Department of Science and Technology via INSPIRE Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

AMD: Research, Carried out experiment, Data analysis, Manuscript writing. HNS: Evolution, Statistical analysis, validation, Manuscript editing and reviewing. HKP: Molecular experimentation, Data analysis, Manuscript editing and reviewing. YKJ: Biochemical analysis, ARDRA analysis, Manuscript editing and reviewing.

Corresponding author

Correspondence to Archana M. Dhole.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest associated with this publication.

Ethical Approval

This research did not involve any studies with human participants or animals (vertebrates) performed by any of the authors.

Consent to Participate

N/A.

Consent for Publication

Authors approves consent for publication of the above work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhole, A.M., Shelat, H.N., Patel, H.K. et al. Evaluation of the Co-inoculation Effect of Rhizobium and Plant Growth Promoting Non-rhizobial Endophytes on Vigna radiata. Curr Microbiol 80, 167 (2023). https://doi.org/10.1007/s00284-023-03266-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03266-4

Navigation