Skip to main content

Advertisement

Log in

Non-Rhizobial Endophytes Associated with Nodules of Vigna radiata L. and Their Combined Activity with Rhizobium sp.

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Root nodules of legume plants are devoted for hosting endophytic symbiotic bacteria that fix atmospheric nitrogen but recently proved as a niche for various non-rhizobial endophytes (NRE) also. In the present investigation, one rhizobial and two NRE were isolated and characterized as Rhizobium sp. AAU B3, Bacillus sp. AAU B6 and Bacillus sp. AAU B12. These isolates were studied for in vitro biocontrol activity against two pathogenic fungi. NRE isolates exhibited antifungal activity against root rot causing Macrophomina phaseolina (ITCC-6749) isolated from Vigna radiata and wilt causing pathogen Fusarium udum Butler isolated from Cajanus cajan in liquid as well as on solid medium. Furthermore, their antagonism was increased markedly when combined with Rhizobium sp. Moreover, Bacillus sp. AAU B6 showed amplification of the zwittermicin A gene (~ 950 bp) which is evident for the production of antibiotics. All three isolates showed HCN production in vitro also, Bacillus sp. AAU B12 exhibited amplification of its gene hcnC. Pathogenic fungal hyphae became thin, transparent, and bent as well as fungi lost their normal growth and branching patterns when exposed to volatile compounds produced by NRE. All the 3 isolates produced siderophores, however siderophore production was increased considerably when all three strains are mixed together. Furthermore, all the three isolates produced cell wall degrading enzymes (chitinase, protease, and cellulase) but lipolytic activity was exhibited only by Rhizobium sp. AAU B3. When NRE inoculated in combination of Rhizobium; overcomes the disease severity against M. phaseolina under pot study. Thus, from present study it is concluded that co-inoculation of NRE and Rhizobium sp. can be exploited as biocontrol bio-agents against M. phaseolina in green gram at field levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Dahmani MA, Desrut A, Moumen B, Verdon J, Mermouri L, Kacem M, Coutos-Thévenot P, Kaid-Harche M, Bergès T, Vriet C (2020) Unearthing the plant growth- promoting traits of Bacillus megaterium RmBm31, an endophytic bacterium isolated from root nodules of Retama monosperma. Front Plant Sci 11:124. https://doi.org/10.3389/fpls.2020.00124

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hansen BL, Pessotti RC, Fischer MS, Collins A, El-Hifnawi L, Liu MD, Traxlera MF (2020) Cooperation, competition, and specialized metabolism in a simplified root nodule microbiome. Bio 11:e01917-e1920. https://doi.org/10.1128/mBio.01917-20

    Article  CAS  Google Scholar 

  3. Zhao LF, Xua YJ, Lai XH (2018) Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Braz J Microbiol 49:269–278. https://doi.org/10.1016/j.bjm.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  4. Fatima Z, Saleemi M, Zia M, Sultan T, Aslam M, Rehman RU, Chaudhary MF (2008) Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat. Afr J Biotechnol 8(2):219–225. https://doi.org/10.5897/AJB2009.000-9040

    Article  Google Scholar 

  5. Pandey AK, Burlakoti RR, Rathore A, Nair RM (2020) Morphological and molecular characterization of Macrophomina phaseolina isolated from three legume crops and evaluation of mungbean genotypes for resistance to dry root rot. Crop Prot 127:104962. https://doi.org/10.1016/j.cropro.2019.104962

    Article  CAS  Google Scholar 

  6. Javaid A, Afzal L, Shoaib A (2016) Biological control of charcoal rot of mungbean by Trichoderma harzianum and shoot dry biomass of Sisymbrium irio. Planta Daninha 2017(v35):e017165756. https://doi.org/10.1590/S0100-83582017350100075

    Article  Google Scholar 

  7. Biswas K, Tarafdar A, Kumar R, Singhvi N, Ghosh P, Sharma M, Pabbi S, Shukla P (2020) Molecular analysis of disease-responsive genes revealing the resistance potential against Fusarium Wilt (Fusarium udum Butler) dependent on genotype variability in the leguminous crop Pigeonpea. Front Genet 11:862. https://doi.org/10.3389/fgene.2020.00862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Holt JG, Krieg NR, Peter PHA, Staley JT, Williams ST (1994) Bergeys manual of determinative bacteriology, 9th edn. William and Wilkins, Baltimore, p 559

    Google Scholar 

  9. Jhala YK, Vyas RV, Shelat HN, Patel HK, Patel HK, Patel KT (2014) Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem. World J Microbiol Biotechnol 30(6):1845–1860. https://doi.org/10.1007/s11274-014-1606-3

    Article  CAS  PubMed  Google Scholar 

  10. Sambrook J, Fritsch EF, Maniatis T (1989) Analysis and cloning of eukaryotic genomic DNA in Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 9–19

    Google Scholar 

  11. Di Cello F, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchioni S, Dalmastri C (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63(11):4485–4493. https://doi.org/10.1128/aem.63.11.4485-4493.1997

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lee KD, Bai Y, Smith D, Han HS, Supanjani S (2005) Isolation of plant-growth-promoting endophytic bacteria from bean nodules. Res J Agric Biol Sci 1(3):232–236

    Google Scholar 

  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Susilowati A, Wahyudi AT, Lestari Y, Suwanto A, Wiyono S (2011) Potential Pseudomonas isolated from Soybean rhizosphere as biocontrol against soilborne phytopathogenic fungi. HAYATI J Biosci 18(2):51–56. https://doi.org/10.4308/hjb.18.2.51

    Article  Google Scholar 

  15. Milner JL, Stohl EA, Handelsman J (1996) Zwittermicin a resistance gene from Bacillus cereus. J Bacteriol 178(14):4266–4272. https://doi.org/10.1128/jb.178.14.4266-4272.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Padaria JC, Tarafdar A, Raipuria R, Lone SA, Gahlot P, Shakil NA, Kumar J (2016) Identification of phenazine-1-carboxylic acid gene (phc CD) from Bacillus pumilus MTCC7615 and its role in antagonism against Rhizoctonia solani. J Basic Microbiol 56:999–1008. https://doi.org/10.1002/jobm.201500574

    Article  CAS  PubMed  Google Scholar 

  17. Raffel SJ, Stabb EV, Milner JL, Handelsman J (1996) Genotypic and phenotypic analysis of zwitterrnicin A- producing strains of Bacillus cereus. Microbiology 142:3425–3436. https://doi.org/10.1099/13500872-142-12-3425

    Article  CAS  PubMed  Google Scholar 

  18. Bakker AW, Schippers B (1987) Microbial cyanides production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Microbiol Biochem 19:451–457. https://doi.org/10.1016/0038-0717(87)90037-X

    Article  CAS  Google Scholar 

  19. Uzair B, Kausar R, Bano SA, Fatima S, Badshah M, Habiba U, Fasim F (2018) Isolation and molecular characterization of a model antagonistic Pseudomonas aeruginosa divulging In Vitro plant growth promoting characteristics. Hindawi Bio Med Res Int 2018:1–7. https://doi.org/10.1155/2018/6147380

    Article  CAS  Google Scholar 

  20. Durr SR (2014) Development of high-throughput methods for the detection of hydrogen cyanide-producing bacteria for the application in biocontrol. (Master’s thesis, University of Natural Resources and Life Sciences, Vienna). https://forschung.boku.ac.at/fis/suchen.hochschulschriften_info?sprache_in=en&menue_id_in=206&id_in=&hochschulschrift_id_in=11680

  21. Raza W, Yang X, Wu H, Wang Y, Xu Y, Shen Q (2009) Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f.sp. nevium. Eur J Plant Pathol 125:471–483. https://doi.org/10.1007/s10658-009-9496-1

    Article  CAS  Google Scholar 

  22. Naing KW, Anees M, Kim SJ, Nam Y, Kim YC, Kim KY (2014) Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Ann Microbiol 64:55–63. https://doi.org/10.1007/s13213-013-0632-y

    Article  CAS  Google Scholar 

  23. Schwyn B, Neilands JB (1987) Universal chemical assay for detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  24. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society of Microbiology, Washington DC, pp 607–654

    Google Scholar 

  25. Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field grown potato plants and their plant growth promoting and antagonistic abilities. Can J Microbiol 50:239–249. https://doi.org/10.1139/w03-118

    Article  CAS  PubMed  Google Scholar 

  26. Lawrence RC, Fryer TF, Reiter B (1967) Rapid method for the quantitative estimation of microbial lipases. Nature 213:1264–1265. https://doi.org/10.1038/2131264a0

    Article  CAS  Google Scholar 

  27. Salah A, Ibrahim A, El-diwany A (2007) Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust J Basic Appl Sci 1(4):473–478

    Google Scholar 

  28. Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42. https://doi.org/10.2307/3001478

    Article  Google Scholar 

  29. Basurto-Cadena MGL, Vazquez-Arista M, Garcıa-Jimenez J, Salcedo-Hernandez R, Bideshi DK, Barboza-Corona JE (2012) Isolation of a New Mexican strain of Bacillus subtilis with antifungal and antibacterial activities. Sci World J 2012:1–7. https://doi.org/10.1100/2012/384978

    Article  CAS  Google Scholar 

  30. Anandaraj B, Leema RDA (2010) Studies on the influence of bio inoculants (Pseudomonas fluorescens, Rhizobium sp., Bacillus megaterium) in Green gram. J Biosci Technol 1(2):95–99

    Google Scholar 

  31. Dhole A, Shelat H, Vyas R, Jhala Y, Bhange M (2016) Endophytic occupation of legume root nodules by nifH-positive non-rhizobial bacteria, and their efficacy in the groundnut (Arachis hypogaea). Ann Microbiol 66:1397–1407. https://doi.org/10.1007/s13213-016-1227-1

    Article  CAS  Google Scholar 

  32. Rajendran G, Sing F, Desai AJ, Archana G (2008) Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:4544–4550. https://doi.org/10.1016/j.biortech.2007.06.057

    Article  CAS  PubMed  Google Scholar 

  33. Stajkovic O, Meyer SD, Miličić B, Willems A, Delić D (2009) Isolation and characterization of endophytic non-rhizobial bacteria from root nodules of alfalfa (Medicago sativa L.). Botanica Serbica 33(1):107–113

    Google Scholar 

  34. Lin T, Zhao L, Yang Y, Guan Q, Gong M (2013) Potential of endophytic bacteria isolated from Sophora alopecuroides nodule in biological control against Verticillium wilt disease. Aust J Crop Sci 7(1):139–146

    Google Scholar 

  35. Pertot I, Puopolo G, Hosni T, Pedrotti L, Jourdan E, Ongena M (2013) Limited impact of abiotic stress on surfactin production in planta and on disease resistance induced by Bacillus amyloliquefaciens S499 in tomato and bean. FEMS Microbiol Ecol 86:505–519. https://doi.org/10.1111/1574-6941.12177

    Article  CAS  PubMed  Google Scholar 

  36. Andreolli M, Zapparoli G, Angelini E, Lucchetta G, Lampis S, Vallini G (2019) Pseudomonas protegens MP12: a plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiol Res 219:123–131. https://doi.org/10.1016/j.micres.2018.11.003

    Article  PubMed  Google Scholar 

  37. Harman GE, Hayes CK, Lorito M, Broadway RM, Di Pietro A, Peterbaues C, Tronsmo A (1993) Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83:313–318

    Article  CAS  Google Scholar 

  38. Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:48–88. https://doi.org/10.1016/0038-0717(87)90058-7

    Article  Google Scholar 

  39. Shapira R, Ordentlich A, Chet I, Openheim AB (1989) Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology 79:1246–1249. https://doi.org/10.1094/PHYTO-79-1246

    Article  CAS  Google Scholar 

  40. Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and L-1,3-glucanase. Plant Physiol 88:936–942. https://doi.org/10.1104/pp.88.3.936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tseng S, Liu S, Yang H, Lo C, Peng K (2008) Proteomic study of biocontrol mechanisms of Trichoderma harzianum ETS 323 in response to Rhizoctonia solani. J Agric Food Chem 56:6914–6922. https://doi.org/10.1021/jf703626j

    Article  CAS  PubMed  Google Scholar 

  42. Ryu CM, Farag MA, Hu CH et al (2003) Bacterial volatiles promotegrowth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. https://doi.org/10.1073/pnas.0730845100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Laville J, Blumer C, Von Schroetter C, Gaia V, Défago G, Keel C, Haas D (1998) Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J Bacteriol 180(12):3187–3196. https://doi.org/10.1128/JB.180.12.3187-3196.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heydari S, Moghadam PR, Arab SM (2015) Hydrogen cyanide production ability by Pseudomonas Fluorescence bacteria and their inhibition potential on weed germination. www.tropentag.de/2008abstracts/full/676.pdf. Accessed 15 Oct 2018

  45. Zhao L, Xu Y, Sun R, Deng Z, Yang W, Wei G (2011) Identification and characterization of the endophytic plant growth prompter Bacillus cereus strain MQ23 isolated from Sophora alopecuroides root nodules. Brazilian J Microbol 42:567–575. https://doi.org/10.1590/S1517-838220110002000022

    Article  Google Scholar 

  46. Pandya M, Rajput M, Rajkumar S (2015) Exploring plant growth promoting potential of non rhizobial root nodules endophytes of V. radiata. Microbiology 84(1):110–119. https://doi.org/10.1134/S0026261715010105

    Article  CAS  Google Scholar 

  47. Wedage WMM, Gunawardana D (2016) Rhizobial and non-Rhizobial nodulators of Pueraria phaseoloides. In: Proceedings of the 2016 international nitrogen initiative conference, Solutions to improve nitrogen use efficiency for the world, 4–8 December 2016, Melbourne, Australia. https://doi.org/10.13140/RG.2.2.25019.62245

  48. Nandimath AP, Kharat KR, Gupta SG, Kharat AS (2016) Optimization of cellulase production for Bacillus sp. and Pseudomonas sp. soil isolates. Afr J Microbiol. Res 10(13):410–419. https://doi.org/10.5897/AJMR2016.7954

    Article  CAS  Google Scholar 

  49. Sethi S, Datta A, Gupta BL, Gupta S (2013) Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnol 2013:1–7. https://doi.org/10.5402/2013/985685

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Department of science and technology for providing financial assistance via INSPIRE Fellowship during the research at Anand Agricultural University, Anand.

Funding

The research was funded by the Department of science and technology via INSPIRE Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Dhole.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest associated with this publication.

Ethical Approval

This research did not involve any studies with human participants or animals (vertebrates) performed by any of the authors.

Consent to Participate

All Authors approve the article for the publication in Current Microbiology.

Consent for Publication

Authors are Consent for publication of the above work in Current Microbiology. We understand that the text and any figures published in the article will be freely available for public. The pictures and text may also appear on other websites or in print, may be translated into other languages or used for commercial purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhole, A., Shelat, H. Non-Rhizobial Endophytes Associated with Nodules of Vigna radiata L. and Their Combined Activity with Rhizobium sp.. Curr Microbiol 79, 103 (2022). https://doi.org/10.1007/s00284-022-02792-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02792-x

Navigation