Skip to main content

Advertisement

Log in

Microbiota-Pain Association; Recent Discoveries and Research Progress

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The relationship between gut microbiota and pain, such as visceral pain, headaches (migraine), itching, prosthetic joint infection (PJI), chronic abdominal pain (CAP), joint pain, etc., has received increasing attention. Several parts of the evidence suggest that microbiota is one of the most important pain modulators and they can regulate pain in the central and peripheral nervous systems. Any alteration in microbiota by diet or antibiotics mediation may characterize a novel therapeutic strategy for pain management. The present study includes the most up-to-date and influential scientific findings on the association of microbiota with pain, despite the fact that the underlying mechanism is not identified in most cases. According to recent research, identifying the molecular mechanisms of the microbiota-pain pathway can have a unique perspective in treating many diseases, even though there is a long way to reach the ideal point. This study will stress the influence of microbiota on the common diseases that can stimulate the pain with a focus on underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Arora HC, Eng C, Shoskes DA (2017) Gut microbiome and chronic prostatitis/chronic pelvic pain syndrome. Ann Transl Med 5(2):30–30. https://doi.org/10.21037/atm.2016.12.32

    Article  CAS  Google Scholar 

  2. Blake KJ et al (2018) Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. Nat Commun 9(1):1–15. https://doi.org/10.1038/s41467-017-02448-6

    Article  CAS  Google Scholar 

  3. Russo R et al (2018) Gut–brain axis: role of lipids in the regulation of inflammation, pain and CNS diseases. Curr Med Chem 25(32):3930–3952. https://doi.org/10.2174/0929867324666170216113756

    Article  CAS  Google Scholar 

  4. Gomaa EZ (2020) Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113(12):2019–2040. https://doi.org/10.1007/s10482-020-01474-7

    Article  Google Scholar 

  5. Guo R et al (2019) Pain regulation by gut microbiota: molecular mechanisms and therapeutic potential. Br J Anaesth 123(5):637–654. https://doi.org/10.1016/j.bja.2019.07.026

    Article  CAS  Google Scholar 

  6. Madanraj AS et al (2019) Interventions to chronic prostatitis/chronic pelvic pain syndrome treatment. Where are we standing and what’s next? Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2019.172429

    Article  Google Scholar 

  7. Zheng D, Liwinski T, Elinav E (2020) Interaction between microbiota and immunity in health and disease. Cell Res 30(6):492–506. https://doi.org/10.1038/s41422-020-0332-7

    Article  Google Scholar 

  8. Vendrik KE et al (2020) Fecal microbiota transplantation in neurological disorders. Front Cell Infect Microbiol 10:98. https://doi.org/10.3389/fcimb.2020.00098

    Article  CAS  Google Scholar 

  9. Shin A et al (2019) The gut microbiome in adult and pediatric functional gastrointestinal disorders. Clin Gastroenterol Hepatol 17(2):256–274. https://doi.org/10.1016/j.cgh.2018.08.054

    Article  CAS  Google Scholar 

  10. Freria C et al (2016) Impairment of toll-like receptors 2 and 4 leads to compensatory mechanisms after sciatic nerve axotomy. J Neuroinflamm 13(1):118. https://doi.org/10.1186/s12974-016-0579-6

    Article  CAS  Google Scholar 

  11. Ren Y et al (2021) Transcriptome-wide identification and characterization of toll-like receptors response to Vibrio anguillarum infection in Manila clam (Ruditapes philippinarum). Fish Shellfish Immunol 111:49–58. https://doi.org/10.1016/j.fsi.2021.01.007

    Article  CAS  Google Scholar 

  12. Siegel SJ, Rakoff-Nahoum S (2019) Innate immune pattern recognition and the development of intestinal cancer. In: Robertson ES (ed) Microbiome and cancer. Springer, Cham, pp 299–316. https://doi.org/10.1007/978-3-030-04155-7_14

    Chapter  Google Scholar 

  13. Patin EC, Thompson A, Orr SJ (2019) Pattern recognition receptors in fungal immunity. In: Davey J (ed) Seminars in cell & developmental biology. Elsevier, Amsterdam. https://doi.org/10.1016/j.semcdb.2018.03.003

    Chapter  Google Scholar 

  14. Fan VS et al (2016) COPD disease severity and innate immune response to pathogen-associated molecular patterns. Int J Chron Obstruct Pulmon Dis 11:467. https://doi.org/10.2147/COPD.S94410

    Article  CAS  Google Scholar 

  15. Dubový P et al (2021) Toll-like receptor 9-mediated neuronal innate immune reaction is associated with initiating a pro-regenerative state in neurons of the dorsal root ganglia non-associated with sciatic nerve lesion. Int J Mol Sci 22(14):7446. https://doi.org/10.3390/ijms22147446

    Article  CAS  Google Scholar 

  16. Thakur KK et al (2017) Therapeutic implications of toll-like receptors in peripheral neuropathic pain. Pharmacol Res 115:224–232. https://doi.org/10.1016/j.phrs.2016.11.019

    Article  CAS  Google Scholar 

  17. Li L et al (2021) Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav Immun 91:740–755. https://doi.org/10.1016/j.bbi.2020.10.007

    Article  CAS  Google Scholar 

  18. Spiljar M, Merkler D, Trajkovski M (2017) The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs, mucosal barrier, and SCFAs. Front Immunol 8:1353. https://doi.org/10.3389/fimmu.2017.01353

    Article  CAS  Google Scholar 

  19. Chatoo M et al (2018) Involvement of corticotropin-releasing factor and receptors in immune cells in irritable bowel syndrome. Front Endocrinol 9:21. https://doi.org/10.3389/fendo.2018.00021

    Article  Google Scholar 

  20. Wei L et al (2021) Gut microbiota dysbiosis in functional gastrointestinal disorders: underpinning the symptoms and pathophysiology. JGH Open 5(9):976–987. https://doi.org/10.1002/jgh3.12528

    Article  Google Scholar 

  21. Li S et al (2020) The role of bacteria and its derived metabolites in chronic pain and depression: recent findings and research progress. Int J Neuropsychopharmacol 23(1):26–41. https://doi.org/10.1093/ijnp/pyz061

    Article  CAS  Google Scholar 

  22. Wrba L et al (2022) Adipose tissue: a neglected organ in the response to severe trauma? Cell Mol Life Sci 79(4):1–12. https://doi.org/10.1007/s00018-022-04234-0

    Article  CAS  Google Scholar 

  23. Borrelli A et al (2018) Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: current and innovative therapeutic approaches. Redox Biol 15:467–479. https://doi.org/10.1016/j.redox.2018.01.009

    Article  CAS  Google Scholar 

  24. O’Mahony SM, Dinan TG, Cryan JF (2017) The gut microbiota as a key regulator of visceral pain. Pain 158:19–28. https://doi.org/10.1097/j.pain.0000000000000779

    Article  Google Scholar 

  25. Rea K et al (2017) The role of the gastrointestinal microbiota in visceral pain. Gastrointestinal pharmacology. Springer, New York, pp 269–287

    Google Scholar 

  26. Goodoory VC et al (2022) Direct healthcare costs of Rome IV or Rome III-defined irritable bowel syndrome in the United Kingdom. Aliment Pharmacol Ther 56(1):110–120

    Article  Google Scholar 

  27. Staudacher HM, Whelan K (2016) Altered gastrointestinal microbiota in irritable bowel syndrome and its modification by diet: probiotics, prebiotics and the low FODMAP diet. Proc Nutr Soc 75(3):306–318. https://doi.org/10.1017/S0029665116000021

    Article  CAS  Google Scholar 

  28. O’Mahony SM, Dinan TG, Cryan JF (2017) The gut microbiota as a key regulator of visceral pain. Pain 158:S19–S28. https://doi.org/10.1097/j.pain.0000000000000779

    Article  Google Scholar 

  29. Pusceddu MM, Gareau MG (2018) Visceral pain: gut microbiota, a new hope? J Biomed Sci 25(1):73. https://doi.org/10.1186/s12929-018-0476-7

    Article  CAS  Google Scholar 

  30. Fukui H, Xu X, Miwa H (2018) Role of gut microbiota–gut hormone axis in the pathophysiology of functional gastrointestinal disorders. J Neurogastroenterol Motil 24(3):367. https://doi.org/10.5056/jnm18071

    Article  Google Scholar 

  31. Mars RA, Frith M, Kashyap PC (2021) Functional gastrointestinal disorders and the microbiome-what is the best strategy for moving microbiome-based therapies for functional gastrointestinal disorders into the clinic? Gastroenterology 160(2):538–555. https://doi.org/10.1053/j.gastro.2020.10.058

    Article  CAS  Google Scholar 

  32. Wood D (2013) Taming the irritable bowel. Current Pharm Design 19(1):142–156

    CAS  Google Scholar 

  33. Jeffery IB et al (2020) Microbiome alterations in IBS. Gut. https://doi.org/10.1136/gutjnl-2020-320919

    Article  Google Scholar 

  34. Reynolds C et al (2018) Fecal microbiome patterns in IBS, IBD, and celiac disease versus healthy controls. Am J Gastroenterol 113:272–273. https://doi.org/10.14309/00000434-201810001-00472

    Article  Google Scholar 

  35. Chong PP et al (2019) The microbiome and irritable bowel syndrome-a review on the pathophysiology, current research and future therapy. Front Microbiol 10:1136. https://doi.org/10.3389/fmicb.2019.01136

    Article  Google Scholar 

  36. Zhuang X et al (2018) Fecal microbiota alterations associated with diarrhea-predominant irritable bowel syndrome. Front Microbiol 9:1600. https://doi.org/10.3389/fmicb.2018.01600

    Article  Google Scholar 

  37. Kundu P et al (2017) Our gut microbiome: the evolving inner self. Cell 171(7):1481–1493. https://doi.org/10.1016/j.cell.2017.11.024

    Article  CAS  Google Scholar 

  38. Saffouri GB et al (2019) Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun 10(1):1–11. https://doi.org/10.1038/s41467-019-09964-7

    Article  CAS  Google Scholar 

  39. Kaplan H, Hutkins RW (2000) Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl Environ Microbiol 66(6):2682–2684. https://doi.org/10.1128/AEM.66.6.2682-2684.2000

    Article  CAS  Google Scholar 

  40. Rivière A et al (2018) Complementary mechanisms for degradation of inulin-type fructans and arabinoxylan oligosaccharides among bifidobacterial strains suggest bacterial cooperation. Appl Environ Microbiol 84(9):e02893-e2917. https://doi.org/10.1128/AEM.02893-17

    Article  Google Scholar 

  41. Silk D et al (2009) Clinical trial: the effects of a trans-galactooligosaccharide prebiotic on faecal microbiota and symptoms in irritable bowel syndrome. Aliment Pharmacol Ther 29(5):508–518. https://doi.org/10.1111/j.1365-2036.2008.03911.x

    Article  CAS  Google Scholar 

  42. Nielsen TK et al (2019) A porcine model for urinary tract infection. Front Microbiol 10:2564. https://doi.org/10.3389/fmicb.2019.02564

    Article  Google Scholar 

  43. Berrondo C et al (2017) PD05-10 antibiotic prophylaxis prior to urinary catheter removal after radical prostatectomy does not prevent urinary tract infections: a randomized controlled clinical trial. J Urol 197(4S):e120–e120. https://doi.org/10.1016/j.juro.2017.02.359

    Article  Google Scholar 

  44. Rosen JM, Klumpp DJ (2014) Mechanisms of pain from urinary tract infection. Int J Urol 21(S1):26–32. https://doi.org/10.1111/iju.12309

    Article  Google Scholar 

  45. Du H-X et al Abnormal gut microbiota composition is associated with experimental autoimmune prostatitis-induced depressive-like behaviors in mice. Prostate. n/a(n/a)

  46. Golombos DM et al (2018) The role of gut microbiome in the pathogenesis of prostate cancer: a prospective pilot study. Urology 111:122–128. https://doi.org/10.1016/j.urology.2017.08.039

    Article  Google Scholar 

  47. Massari F et al (2019) The human microbiota and prostate cancer: friend or foe? Cancers 11(4):459. https://doi.org/10.3390/cancers11040459

    Article  CAS  Google Scholar 

  48. Sfanos KS et al (2018) The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol 15(1):11–24. https://doi.org/10.1038/nrurol.2017.167

    Article  Google Scholar 

  49. Porter CM et al (2018) The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis 21(3):345–354. https://doi.org/10.1038/s41391-018-0041-1

    Article  CAS  Google Scholar 

  50. Krsmanovic A et al (2014) Psychosocial mechanisms of the pain and quality of life relationship for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Can Urol Assoc J 8(11–12):403. https://doi.org/10.5489/cuaj.2179

    Article  Google Scholar 

  51. Shoskes DA, Nickel JC (2013) Classification and treatment of men with chronic prostatitis/chronic pelvic pain syndrome using the UPOINT system. World J Urol 31(4):755–760. https://doi.org/10.1007/s00345-013-1075-6

    Article  CAS  Google Scholar 

  52. Shoskes DA et al (2016) Analysis of gut microbiome reveals significant differences between men with chronic prostatitis/chronic pelvic pain syndrome and controls. J Urol 196(2):435–441. https://doi.org/10.1016/j.juro.2016.02.2959

    Article  Google Scholar 

  53. Shoskes DA et al (2016) The urinary microbiome differs significantly between patients with chronic prostatitis/chronic pelvic pain syndrome and controls as well as between patients with different clinical phenotypes. Urology 92:26–32. https://doi.org/10.1016/j.urology.2016.02.043

    Article  Google Scholar 

  54. Breser ML et al (2017) Immunological mechanisms underlying chronic pelvic pain and prostate inflammation in chronic pelvic pain syndrome. Front Immunol. https://doi.org/10.3389/fimmu.2017.00898

    Article  Google Scholar 

  55. Shoskes DA et al (1999) Quercetin in men with category III chronic prostatitis: a preliminary prospective, double-blind, placebo-controlled trial. Urology 54(6):960–963. https://doi.org/10.1016/S0090-4295(99)00358-1

    Article  CAS  Google Scholar 

  56. Noghani MT, Namdar H (2019) Migraine associated with gastrointestinal disorders: a pathophysiological explanation. Med Hypotheses 125:90–93. https://doi.org/10.1016/j.mehy.2019.02.041

    Article  Google Scholar 

  57. Rahmoune H, Boutrid N (2017) Migraine, celiac disease and intestinal microbiota. Pediatr Neurol Briefs 31(2):6. https://doi.org/10.15844/pedneurbriefs-31-2-3

    Article  Google Scholar 

  58. Yu-Jie Dai M et al (2017) Potential beneficial effects of probiotics on human migraine headache: a literature review. Pain Phys 20:S251–S255. https://doi.org/10.36076/ppj.2017.E255

    Article  Google Scholar 

  59. Tang Y et al (2020) Gut microbiota dysbiosis enhances migraine-like pain via TNFα upregulation. Mol Neurobiol 57(1):461–468. https://doi.org/10.1007/s12035-019-01721-7

    Article  CAS  Google Scholar 

  60. Cámara-Lemarroy CR et al (2016) Gastrointestinal disorders associated with migraine: a comprehensive review. World J Gastroenterol 22(36):8149. https://doi.org/10.3748/wjg.v22.i36.8149

    Article  Google Scholar 

  61. Talafi Noghani M, Namdar H (2019) Migraine associated with gastrointestinal disorders: A pathophysiological explanation. Med Hypotheses 125:90–93. https://doi.org/10.1016/j.mehy.2019.02.041

    Article  Google Scholar 

  62. Firestein GS, McInnes IB (2017) Immunopathogenesis of rheumatoid arthritis. Immunity 46(2):183–196. https://doi.org/10.1016/j.immuni.2017.02.006

    Article  CAS  Google Scholar 

  63. Horta-Baas G et al (2017) Intestinal dysbiosis and rheumatoid arthritis: a link between gut microbiota and the pathogenesis of rheumatoid arthritis. J Immunol Res. https://doi.org/10.1155/2017/4835189

    Article  Google Scholar 

  64. Xu X et al (2021) Gut–bone axis: a non-negligible contributor to periodontitis. Front Cell Infect Microbiol 11:1135

    Google Scholar 

  65. Boer CG et al (2019) Intestinal microbiome composition and its relation to joint pain and inflammation. Nat Commun 10(1):1–9. https://doi.org/10.1038/s41467-019-12873-4

    Article  CAS  Google Scholar 

  66. Bergot A-S, Giri R, Thomas R (2019) The microbiome and rheumatoid arthritis. Best Pract Res Clin Rheumatol 33(6):101497. https://doi.org/10.1016/j.berh.2020.101497

    Article  Google Scholar 

  67. Clos-Garcia M et al (2019) Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia. EBioMedicine 46:499–511. https://doi.org/10.1016/j.ebiom.2019.07.031

    Article  Google Scholar 

  68. Qassem R, Watad A (2021) The role of infection and immunization in the induction of fibromyalgia. Fibromyalgia syndrome. Springer, New York, pp 267–272

    Chapter  Google Scholar 

  69. Minerbi A, Fitzcharles M (2020) Gut microbiome: pertinence in fibromyalgia. Clin Exp Rheumatol 38(1):99

    Google Scholar 

  70. Erdrich S et al (2020) Determining the association between fibromyalgia, the gut microbiome and its biomarkers: a systematic review. BMC Musculoskelet Disord 21(1):1–12. https://doi.org/10.1186/s12891-020-03201-9

    Article  Google Scholar 

  71. Minerbi A, Fitzcharles M-A (2020) Gut microbiome: pertinence in fibromyalgia. Clin Exp Rheumatol 38(123):S99–S104

    Google Scholar 

  72. Minerbi A et al (2019) Altered microbiome composition in individuals with fibromyalgia. Pain 160(11):2589–2602. https://doi.org/10.1097/j.pain.0000000000001640

    Article  CAS  Google Scholar 

  73. Nickel JC et al (2018) The interstitial cystitis/bladder pain syndrome clinical picture: a perspective from patient life experience. Urol Pract 5(4):286–292. https://doi.org/10.1016/j.urpr.2017.06.005

    Article  Google Scholar 

  74. Colemeadow J, Sahai A, Malde S (2020) Clinical management of bladder pain syndrome/interstitial cystitis: a review on current recommendations and emerging treatment options. Res Rep Urol 12:331. https://doi.org/10.2147/RRU.S238746

    Article  CAS  Google Scholar 

  75. Thomas-White K et al (2018) Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nat Commun 9(1):1–7. https://doi.org/10.1038/s41467-018-03968-5

    Article  CAS  Google Scholar 

  76. Wein AJ (2020) Re: A culture-independent analysis of the microbiota of female interstitial cystitis/bladder pain syndrome participants in the MAPP research network. J Urol 203(2):258–259. https://doi.org/10.1097/01.JU.0000614912.86465.ab

    Article  Google Scholar 

  77. Grundy L, Caldwell A, Brierley SM (2018) Mechanisms underlying overactive bladder and interstitial cystitis/painful bladder syndrome. Front Neurosci 12:931. https://doi.org/10.3389/fnins.2018.00931

    Article  Google Scholar 

  78. Contreras-Sanz A et al (2016) Altered urothelial ATP signaling in a major subset of human overactive bladder patients with pyuria. Am J Physiol-Renal Physiol 311(4):F805–F816. https://doi.org/10.1152/ajprenal.00339.2015

    Article  CAS  Google Scholar 

  79. Nickel JC et al (2019) A culture-independent analysis of the microbiota of female interstitial cystitis/bladder pain syndrome participants in the MAPP research network. J Clin Med 8(3):415. https://doi.org/10.3390/jcm8030415

    Article  Google Scholar 

  80. Curtiss N et al (2017) A case controlled study examining the bladder microbiome in women with overactive bladder (OAB) and healthy controls. Eur J Obstet Gynecol Reprod Biol 214:31–35. https://doi.org/10.1016/j.ejogrb.2017.04.040

    Article  Google Scholar 

  81. Bajic P, Wolfe AJ, Gupta GN (2019) The urinary microbiome: implications in bladder cancer pathogenesis and therapeutics. Urology 126:10–15. https://doi.org/10.1016/j.urology.2018.12.034

    Article  Google Scholar 

  82. Abernethy MG et al (2017) Urinary microbiome and cytokine levels in women with interstitial cystitis. Obstet Gynecol 129(3):500–506. https://doi.org/10.1097/AOG.0000000000001892

    Article  CAS  Google Scholar 

  83. Guida F et al (2020) Altered gut microbiota and endocannabinoid system tone in vitamin D deficiency-mediated chronic pain. Brain Behav Immunol 85:128–141. https://doi.org/10.1016/j.bbi.2019.04.006

    Article  CAS  Google Scholar 

  84. Burmistr I (2018) Theories of pain, up to Descartes and after neuromatrix: what role do they have to develop future paradigms? Pain Med 3(1):6–12. https://doi.org/10.31636/pmjua.v3i1.81

    Article  Google Scholar 

  85. Singhal M, Arora V, Im H-J (2020) Gastrointestinal disorders-induced pain. Gene Rep 18:100580. https://doi.org/10.1016/j.genrep.2019.100580

    Article  Google Scholar 

  86. Eicher TP, Mohajeri MH (2022) Overlapping mechanisms of action of brain-active bacteria and bacterial metabolites in the pathogenesis of common brain diseases. Nutrients 14(13):2661. https://doi.org/10.3390/nu14132661

    Article  CAS  Google Scholar 

  87. Liang Y et al (2021) Gut microbial metabolites in Parkinson’s disease: implications of mitochondrial dysfunction in the pathogenesis and treatment. Mol Neurobiol 58(8):3745–3758. https://doi.org/10.1007/s12035-021-02375-0

    Article  CAS  Google Scholar 

  88. Favazzo LJ, Hendesi H, Villani DA, Soniwala S, Dar Q-A, Schott EM et al (2020) The gut microbiome–joint connection: implications in osteoarthritis. Curr Opin Rheumatol 32(1):92–101. https://doi.org/10.1097/bor.0000000000000681

    Article  Google Scholar 

  89. Rea K, O’Mahony SM, Dinan TG, Cryan JF (2017) The role of the gastrointestinal microbiota in visceral pain. In: Greenwood-Van Meerveld B (ed) Gastrointestinal pharmacology. Springer, New York, pp 269–287

    Chapter  Google Scholar 

  90. O’Mahony SM, Dinan TG, Cryan JF (2017) The gut microbiota as a key regulator of visceral pain. Pain. https://doi.org/10.1097/j.pain.0000000000000779

    Article  Google Scholar 

  91. van Hemert S, Breedveld AC, Rovers JMP, Vermeiden JPW, Witteman BJM, Smits MG et al (2014) Migraine associated with gastrointestinal disorders: review of the literature and clinical implications. Front Neurol. https://doi.org/10.3389/fneur.2014.00241

    Article  Google Scholar 

  92. Simrén M (2018) Manipulating the gut microbiome as a treatment strategy for functional gastrointestinal disorders. Gastroenterology 155(4):960–962. https://doi.org/10.1053/j.gastro.2018.09.008

    Article  Google Scholar 

  93. Malt EA, Olafsson S, Ursin H (2004) Fibromyalgia a manifestation of helicobacter pylori infection? Scand J Rheumatol 33(2):131. https://doi.org/10.1080/03009740410006826-1468

    Article  Google Scholar 

  94. Minerbi A, Gonzalez E, Brereton NJB, Anjarkouchian A, Dewar K, Fitzcharles M-A et al (2019) Altered microbiome composition in individuals with fibromyalgia. Pain 160(11):2589–2602. https://doi.org/10.1097/j.pain.0000000000001640

    Article  CAS  Google Scholar 

  95. Peña-Vélez R, Toro-Monjaraz E, Avelar-Rodríguez D, Ignorosa-Arellano K, Zárate-Mondragón F, Cervantes-Bustamante R et al (2019) Small intestinal bacterial overgrowth: could it be associated with chronic abdominal pain in children with allergic diseases? REV ESP ENFERM DIG 111(12):927–930. https://doi.org/10.17235/reed.2019.6321/2019

    Article  Google Scholar 

  96. Sekharan C, Kumar D, Kumari K, Joachim C (2017) Determination of prevalence of urinary tract infection among the pregnant women with lower abdominal pain. UK J Pharm Biosci 5(2):50–55. https://doi.org/10.20510/ukjpb/5/i2/155996

    Article  Google Scholar 

  97. Schmulson M, Bielsa MV, Carmona-Sánchez R, Hernández A, López-Colombo A, Vidal YL et al (2014) Microbiota, gastrointestinal infections, low-grade inflammation, and antibiotic therapy in irritable bowel syndrome (IBS): an evidence-based review. Revista de Gastroenterología de México (English Edition) 79(2):96–134. https://doi.org/10.1016/j.rgmxen.2014.01.001

    Article  CAS  Google Scholar 

  98. Boff D, Oliveira VLS, Queiroz Junior CM, Silva TA, Allegretti M, Verri WA Jr et al (2018) CXCR2 is critical for bacterial control and development of joint damage and pain in Staphylococcus aureus-induced septic arthritis in mouse. Eur J Immunol 48(3):454–463. https://doi.org/10.1002/eji.201747198

    Article  CAS  Google Scholar 

  99. Boer CG, Radjabzadeh D, Medina-Gomez C, Garmaeva S, Schiphof D, Arp P et al (2019) Intestinal microbiome composition and its relation to joint pain and inflammation. Nat Commun 10(1):4881. https://doi.org/10.1038/s41467-019-12873-4

    Article  CAS  Google Scholar 

  100. Rosen JM, Klumpp DJ (2014) Mechanisms of pain from urinary tract infection. Int J Urol 21:26–32. https://doi.org/10.1111/iju.12309

    Article  Google Scholar 

  101. Nickel J (2016) Inflammatory and pain conditions of the male genitourinary tract: prostatitis and related pain conditions, orchitis, and epididymitis, 11th edn. Elsevier, Philadelphia

    Google Scholar 

  102. Salehi B, Butnariu M, Corneanu M, Sarac I, Vlaisavljevic S, Kitic D et al (2019) Chronic pelvic pain syndrome: highlighting medicinal plants toward biomolecules discovery for upcoming drugs formulation. Phytother Res. https://doi.org/10.1002/ptr.6576

    Article  Google Scholar 

  103. Wang Y, Beekman J, Hew J, Jackson S, Issler-Fisher AC, Parungao R et al (2018) Burn injury: challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev 123:3–17. https://doi.org/10.1016/j.addr.2017.09.018

    Article  CAS  Google Scholar 

  104. Kundu P, Blacher E, Elinav E, Pettersson S (2017) Our gut microbiome: the evolving inner self. Cell 171(7):1481–1493. https://doi.org/10.1016/j.cell.2017.11.024

    Article  CAS  Google Scholar 

  105. Fukui H, Xu X, Miwa H (2018) Role of gut microbiota-gut hormone axis in the pathophysiology of functional gastrointestinal disorders. J Neurogastroenterol Motil 24(3):367. https://doi.org/10.5056/jnm18071

    Article  Google Scholar 

  106. Barbara G, Feinle-Bisset C, Ghoshal UC, Santos J, Vanner SJ, Vergnolle N et al (2016) The intestinal microenvironment and functional gastrointestinal disorders. Gastroenterology 150(6):1305–18.e8. https://doi.org/10.1053/j.gastro.2016.02.028

    Article  Google Scholar 

  107. Nickel JC, Stephens-Shields AJ, Landis JR, Mullins C, van Bokhoven A, Lucia MS et al (2019) A culture-independent analysis of the microbiota of female interstitial cystitis/bladder pain syndrome participants in the MAPP research network. J Clin Med 8(3):415. https://doi.org/10.3390/jcm8030415

    Article  Google Scholar 

  108. Southgate EL, He RL, Gao JL, Murphy PM, Nanamori M, Ye RD (2008) Identification of formyl peptides from Listeria monocytogenes and Staphylococcus aureus as potent chemoattractants for mouse neutrophils. J Immunol 181(2):1429–1437. https://doi.org/10.4049/jimmunol.181.2.1429

    Article  CAS  Google Scholar 

  109. Luo Z, Wang H, Fang S, Li L, Li X, Shi J et al (2019) Annexin-1 mimetic peptide Ac2–26 suppresses inflammatory mediators in LPS-induced astrocytes and ameliorates pain hypersensitivity in a rat model of inflammatory pain. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-019-00755-8

    Article  Google Scholar 

  110. Chiu IM, Heesters BA, Ghasemlou N, Von Hehn CA, Zhao F, Tran J et al (2013) Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501(7465):52–57. https://doi.org/10.1038/nature12479

    Article  CAS  Google Scholar 

  111. Rosen JM, Yaggie RE, Woida PJ, Miller RJ, Schaeffer AJ, Klumpp DJ (2018) TRPV1 and the MCP-1/CCR2 axis modulate post-UTI chronic pain. Sci Rep 8(1):7188. https://doi.org/10.1038/s41598-018-24056-0

    Article  CAS  Google Scholar 

  112. Blake KJ, Baral P, Voisin T, Lubkin A, Pinho-Ribeiro FA, Adams KL et al (2018) Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. Nat Commun 9(1):37. https://doi.org/10.1038/s41467-017-02448-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Aging Research Institute and the Physical Medicine Rehabilitation Research Center of Tabriz University of Medical Sciences.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AM; Writing and editing original draft, NA: Writing and editing original draft, GN: Writing original draft and tables drawing, MsK: Writing and editing original draft, TH: Writing and editing original draft, MEs-a: Writing and editing original draft.

Corresponding authors

Correspondence to Ahmad Mobed or Mehran Ebrahimi shah-abadi.

Ethics declarations

Conflict of interest

There is no declared conflict of interest.

Ethical Approval

The paper does not contain any study on human participants or animals.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the content of the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, N., Naderi, G., Kahrizi, M.s. et al. Microbiota-Pain Association; Recent Discoveries and Research Progress. Curr Microbiol 80, 29 (2023). https://doi.org/10.1007/s00284-022-03124-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03124-9

Navigation