Skip to main content

Innate Immune Pattern Recognition and the Development of Intestinal Cancer

  • Chapter
  • First Online:
Microbiome and Cancer

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Inflammation and cancer have been connected since Virchow’s pathologic examination of tumors revealed widespread immune cell infiltration. It is only recently, however, that a mechanistic understanding of this association has emerged. Pattern recognition receptors (PRRs), host receptors that transmit signals after binding moieties found in microbes or released by the host in response to injury, are one such molecular link. Recent work has established the importance of microbe-host signaling, mediated by PRRs, in a range of inflammatory responses, including the development and inhibition of cancer. Here, we review pattern recognition receptors and the implications of their activation on cancer. We focus on cancers in the gastrointestinal tract, the site of the greatest magnitude and diversity of the microbiota in humans. Signaling through PRRs impacts every stage of intestinal cancer, from the early phases of initiation to metastatic spread, and diverse cell types found in the tumor microenvironment, from neoplastic cells themselves to immune and stromal cells. We highlight recent discoveries that support a model in which tumors progress by exploiting PRR signaling. We argue that the tumor microenvironment exposes diverse signals from an altered microbiota and the host itself that converge on pattern recognition receptors, thereby perpetuating tumor growth. Analogous to pathogens, tumors orchestrate their own survival, which we propose occurs by both inducing and benefitting from alterations in host-associated microbial colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elinav E, Nowarski R, Thaiss CA et al (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13:759–771. https://doi.org/10.1038/nrc3611

    Article  CAS  PubMed  Google Scholar 

  2. Rakoff-Nahoum S, Medzhitov R (2009) Toll-like receptors and cancer. Nat Rev Cancer 9:57–63. https://doi.org/10.1038/nrc2541

    Article  CAS  PubMed  Google Scholar 

  3. Medzhitov R (2009) Approaching the asymptote: 20 years later. Immunity 30:766–775. https://doi.org/10.1016/j.immuni.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  4. Janeway CA (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    Article  CAS  PubMed  Google Scholar 

  5. Medzhitov R, Preston-Hurlburt P, Janeway CA (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397. https://doi.org/10.1038/41131

    Article  CAS  PubMed  Google Scholar 

  6. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672. https://doi.org/10.1038/nrmicro3344

    Article  CAS  PubMed  Google Scholar 

  7. Medvedev AE (2013) Toll-like receptor polymorphisms, inflammatory and infectious diseases, allergies, and cancer. J Interf Cytokine Res 33:467–484. https://doi.org/10.1089/jir.2012.0140

    Article  CAS  Google Scholar 

  8. Brubaker SW, Bonham KS, Zanoni I, Kagan JC (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257–290. https://doi.org/10.1146/annurev-immunol-032414-112240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Odendall C, Kagan JC (2017) Activation and pathogenic manipulation of the sensors of the innate immune system. Microbes Infect 19:229–237. https://doi.org/10.1016/j.micinf.2017.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kieser KJ, Kagan JC (2017) Multi-receptor detection of individual bacterial products by the innate immune system. Nat Rev Immunol 17:376–390. https://doi.org/10.1038/nri.2017.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kucerova P, Cervinkova M (2016) Spontaneous regression of tumour and the role of microbial infection—possibilities for cancer treatment. Anti-Cancer Drugs 27:269–277. https://doi.org/10.1097/CAD.0000000000000337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coley WB (1910) The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med 3:1–48

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Garay RP, Viens P, Bauer J et al (2007) Cancer relapse under chemotherapy: why TLR2/4 receptor agonists can help. Eur J Pharmacol 563:1–17. https://doi.org/10.1016/j.ejphar.2007.02.018

    Article  CAS  PubMed  Google Scholar 

  14. Redelman-Sidi G, Glickman MS, Bochner BH (2014) The mechanism of action of BCG therapy for bladder cancer—a current perspective. Nat Rev Urol 11:153–162. https://doi.org/10.1038/nrurol.2014.15

    Article  CAS  PubMed  Google Scholar 

  15. Pradere J-P, Dapito DH, Schwabe RF (2014) The Yin and Yang of Toll-like receptors in cancer. Oncogene 33:3485–3495. https://doi.org/10.1038/onc.2013.302

    Article  CAS  PubMed  Google Scholar 

  16. Kostic AD, Chun E, Meyerson M, Garrett WS (2013a) Microbes and inflammation in colorectal cancer. Cancer Immunol Res 1:150–157. https://doi.org/10.1158/2326-6066.CIR-13-0101

    Article  CAS  PubMed  Google Scholar 

  17. Schwabe RF, Jobin C (2013) The microbiome and cancer. Nat Rev Cancer 13:800–812. https://doi.org/10.1038/nrc3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McAllister F, Housseau F, Sears CL (2014) Microbiota and immune responses in colon cancer: more to learn. Cancer J 20:232–236. https://doi.org/10.1097/PPO.0000000000000051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen GY, Liu M, Wang F et al (2011) A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol 186:7187–7194. https://doi.org/10.4049/jimmunol.1100412

    Article  CAS  PubMed  Google Scholar 

  20. Elinav E, Strowig T, Kau AL et al (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–757. https://doi.org/10.1016/j.cell.2011.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wlodarska M, Thaiss CA, Nowarski R et al (2014) NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156:1045–1059. https://doi.org/10.1016/j.cell.2014.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Levy M, Thaiss CA, Zeevi D et al (2015) Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163:1428–1443. https://doi.org/10.1016/j.cell.2015.10.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu B, Elinav E, Huber S et al (2013) Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc Natl Acad Sci U S A 110:9862–9867. https://doi.org/10.1073/pnas.1307575110

    Article  PubMed  PubMed Central  Google Scholar 

  24. Allen IC, TeKippe EM, Woodford R-MT et al (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207:1045–1056. https://doi.org/10.1084/jem.20100050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zaki MH, Vogel P, Body-Malapel M et al (2010) IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol 185:4912–4920. https://doi.org/10.4049/jimmunol.1002046

    Article  CAS  PubMed  Google Scholar 

  26. Hu B, Elinav E, Huber S et al (2010) Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci U S A 107:21635–21640. https://doi.org/10.1073/pnas.1016814108

    Article  PubMed  PubMed Central  Google Scholar 

  27. Allen IC, Wilson JE, Schneider M et al (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity 36:742–754. https://doi.org/10.1016/j.immuni.2012.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zaki MH, Vogel P, Malireddi RKS et al (2011) The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis. Cancer Cell 20:649–660. https://doi.org/10.1016/j.ccr.2011.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allam R, Maillard MH, Tardivel A et al (2015) Epithelial NAIPs protect against colonic tumorigenesis. J Exp Med 212:369–383. https://doi.org/10.1084/jem.20140474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Couturier-Maillard A, Secher T, Rehman A et al (2013) NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest 123:700–711. https://doi.org/10.1172/JCI62236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Girardin SE, Boneca IG, Viala J et al (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872. https://doi.org/10.1074/jbc.C200651200

    Article  CAS  PubMed  Google Scholar 

  32. Udden SMN, Peng L, Gan J-L et al (2017) NOD2 suppresses colorectal tumorigenesis via downregulation of the TLR pathways. Cell Rep 19:2756–2770. https://doi.org/10.1016/j.celrep.2017.05.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Allen IC, Moore CB, Schneider M et al (2011) NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NF-κB signaling pathways. Immunity 34:854–865. https://doi.org/10.1016/j.immuni.2011.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Man SM, Zhu Q, Zhu L et al (2015) Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell 162:45–58. https://doi.org/10.1016/j.cell.2015.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilson JE, Petrucelli AS, Chen L et al (2015) Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat Med 21:906–913. https://doi.org/10.1038/nm.3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu H, Xu W-Y, Hu Z et al (2017) RNA virus receptor Rig-I monitors gut microbiota and inhibits colitis-associated colorectal cancer. J Exp Clin Cancer Res 36:2. https://doi.org/10.1186/s13046-016-0471-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  CAS  PubMed  Google Scholar 

  38. Brennan CA, Garrett WS (2016) Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol 70:395–411. https://doi.org/10.1146/annurev-micro-102215-095513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  CAS  PubMed  Google Scholar 

  40. Boraska Jelavić T, Barisić M, Drmic Hofman I et al (2006) Microsatellite GT polymorphism in the toll-like receptor 2 is associated with colorectal cancer. Clin Genet 70:156–160. https://doi.org/10.1111/j.1399-0004.2006.00651.x

    Article  PubMed  Google Scholar 

  41. Klimosch SN, Försti A, Eckert J et al (2013) Functional TLR5 genetic variants affect human colorectal cancer survival. Cancer Res 73:7232–7242. https://doi.org/10.1158/0008-5472.CAN-13-1746

    Article  CAS  PubMed  Google Scholar 

  42. Li X-X, Sun G-P, Meng J et al (2014) Role of toll-like receptor 4 in colorectal carcinogenesis: a meta-analysis. PLoS One 9:e93904. https://doi.org/10.1371/journal.pone.0093904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Proença MA, de Oliveira JG, Cadamuro ACT et al (2015) TLR2 and TLR4 polymorphisms influence mRNA and protein expression in colorectal cancer. World J Gastroenterol 21:7730–7741. https://doi.org/10.3748/wjg.v21.i25.7730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Slattery ML, Herrick JS, Bondurant KL, Wolff RK (2012) Toll-like receptor genes and their association with colon and rectal cancer development and prognosis. Int J Cancer 130:2974–2980. https://doi.org/10.1002/ijc.26314

    Article  CAS  PubMed  Google Scholar 

  45. Ungerbäck J, Belenki D, Jawad ul-Hassan A et al (2012) Genetic variation and alterations of genes involved in NFκB/TNFAIP3- and NLRP3-inflammasome signaling affect susceptibility and outcome of colorectal cancer. Carcinogenesis 33:2126–2134. https://doi.org/10.1093/carcin/bgs256

    Article  CAS  PubMed  Google Scholar 

  46. Wang H, Flannery SM, Dickhöfer S et al (2014) A coding IRAK2 protein variant compromises Toll-like receptor (TLR) signaling and is associated with colorectal cancer survival. J Biol Chem 289:23123–23131. https://doi.org/10.1074/jbc.M113.492934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fukata M, Chen A, Vamadevan AS et al (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133:1869–1881. https://doi.org/10.1053/j.gastro.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  48. de Martel C, Ferlay J, Franceschi S et al (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13:607–615. https://doi.org/10.1016/S1470-2045(12)70137-7

    Article  PubMed  Google Scholar 

  49. Gagnaire A, Nadel B, Raoult D et al (2017) Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nat Rev Microbiol 15:109–128. https://doi.org/10.1038/nrmicro.2016.171

    Article  CAS  PubMed  Google Scholar 

  50. Rhee K-J, Wu S, Wu X et al (2009) Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun 77:1708–1718. https://doi.org/10.1128/IAI.00814-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu S, Rhee K-J, Albesiano E et al (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15:1016–1022. https://doi.org/10.1038/nm.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Housseau F, Sears CL (2010) Enterotoxigenic Bacteroides fragilis (ETBF)-mediated colitis in Min (Apc+/−) mice: a human commensal-based murine model of colon carcinogenesis. Cell Cycle 9:3–5. https://doi.org/10.4161/cc.9.1.10352

    Article  CAS  PubMed  Google Scholar 

  53. Housseau F, Wu S, Wick EC et al (2016) Redundant innate and adaptive sources of IL17 production drive colon tumorigenesis. Cancer Res 76:2115–2124. https://doi.org/10.1158/0008-5472.CAN-15-0749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hope ME, Hold GL, Kain R, El-Omar EM (2005) Sporadic colorectal cancer—role of the commensal microbiota. FEMS Microbiol Lett 244:1–7. https://doi.org/10.1016/j.femsle.2005.01.029

    Article  CAS  PubMed  Google Scholar 

  55. Boleij A, Hechenbleikner EM, Goodwin AC et al (2015) The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 60:208–215. https://doi.org/10.1093/cid/ciu787

    Article  CAS  PubMed  Google Scholar 

  56. Toprak NU, Yagci A, Gulluoglu BM et al (2006) A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 12:782–786. https://doi.org/10.1111/j.1469-0691.2006.01494.x

    Article  CAS  PubMed  Google Scholar 

  57. Sears CL, Pardoll DM (2011) Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. J Infect Dis 203:306–311. https://doi.org/10.1093/jinfdis/jiq061

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hajishengallis G, Darveau RP, Curtis MA (2012) The keystone-pathogen hypothesis. Nat Rev Microbiol 10:717–725. https://doi.org/10.1038/nrmicro2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bäckhed F, Fraser CM, Ringel Y et al (2012) Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 12:611–622. https://doi.org/10.1016/j.chom.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  60. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE (2012) A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol 10:575–582. https://doi.org/10.1038/nrmicro2819

    Article  CAS  PubMed  Google Scholar 

  61. Castellarin M, Warren RL, Freeman JD et al (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299–306. https://doi.org/10.1101/gr.126516.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kostic AD, Gevers D, Pedamallu CS et al (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298. https://doi.org/10.1101/gr.126573.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kostic AD, Chun E, Robertson L et al (2013b) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207–215. https://doi.org/10.1016/j.chom.2013.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Garrett WS (2015) Cancer and the microbiota. Science 348:80–86. https://doi.org/10.1126/science.aaa4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen Y, Peng Y, Yu J et al (2017) Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget 8:31802–31814. https://doi.org/10.18632/oncotarget.15992

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yang Y, Weng W, Peng J et al (2017) Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21. Gastroenterology 152:851–866.e24. https://doi.org/10.1053/j.gastro.2016.11.018

    Article  CAS  PubMed  Google Scholar 

  67. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F et al (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241. https://doi.org/10.1016/j.cell.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  68. Rakoff-Nahoum S, Medzhitov R (2007) Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317:124–127. https://doi.org/10.1126/science.1140488

    Article  CAS  PubMed  Google Scholar 

  69. Tye H, Kennedy CL, Najdovska M et al (2012) STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell 22:466–478. https://doi.org/10.1016/j.ccr.2012.08.010

    Article  CAS  PubMed  Google Scholar 

  70. Watson AJM, Collins PD (2011) Colon cancer: a civilization disorder. Dig Dis 29:222–228. https://doi.org/10.1159/000323926

    Article  PubMed  Google Scholar 

  71. Fukata M, Abreu MT (2009) Pathogen recognition receptors, cancer and inflammation in the gut. Curr Opin Pharmacol 9:680–687. https://doi.org/10.1016/j.coph.2009.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee SH, Hu L-L, Gonzalez-Navajas J et al (2010) ERK activation drives intestinal tumorigenesis in Apc(min/+) mice. Nat Med 16:665–670. https://doi.org/10.1038/nm.2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schiechl G, Bauer B, Fuss I et al (2011) Tumor development in murine ulcerative colitis depends on MyD88 signaling of colonic F4/80+CD11b(high)Gr1(low) macrophages. J Clin Invest 121:1692–1708. https://doi.org/10.1172/JCI42540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Goldszmid RS, Dzutsev A, Trinchieri G (2014) Host immune response to infection and cancer: unexpected commonalities. Cell Host Microbe 15:295–305. https://doi.org/10.1016/j.chom.2014.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Luddy KA, Robertson-Tessi M, Tafreshi NK et al (2014) The role of toll-like receptors in colorectal cancer progression: evidence for epithelial to leucocytic transition. Front Immunol 5:429. https://doi.org/10.3389/fimmu.2014.00429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659. https://doi.org/10.1056/NEJM198612253152606

    Article  CAS  PubMed  Google Scholar 

  77. Bullman S, Pedamallu CS, Sicinska E et al (2017) Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358:1443–1448. https://doi.org/10.1126/science.aal5240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Arthur JC, Perez-Chanona E, Mühlbauer M et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123. https://doi.org/10.1126/science.1224820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nougayrède J-P, Homburg S, Taieb F et al (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848–851. https://doi.org/10.1126/science.1127059

    Article  CAS  PubMed  Google Scholar 

  80. Buc E, Dubois D, Sauvanet P et al (2013) High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One 8:e56964. https://doi.org/10.1371/journal.pone.0056964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nowrouzian FL, Oswald E (2012) Escherichia coli strains with the capacity for long-term persistence in the bowel microbiota carry the potentially genotoxic pks island. Microb Pathog 53:180–182. https://doi.org/10.1016/j.micpath.2012.05.011

    Article  CAS  PubMed  Google Scholar 

  82. Sears CL, Geis AL, Housseau F (2014) Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest 124:4166–4172. https://doi.org/10.1172/JCI72334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu S, Rhee K-J, Zhang M et al (2007) Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J Cell Sci 120:1944–1952. https://doi.org/10.1242/jcs.03455

    Article  CAS  PubMed  Google Scholar 

  84. Sears CL (2009) Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev 22:349–369. https://doi.org/10.1128/CMR.00053-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu S, Powell J, Mathioudakis N et al (2004) Bacteroides fragilis enterotoxin induces intestinal epithelial cell secretion of interleukin-8 through mitogen-activated protein kinases and a tyrosine kinase-regulated nuclear factor-kappaB pathway. Infect Immun 72:5832–5839. https://doi.org/10.1128/IAI.72.10.5832-5839.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gur C, Ibrahim Y, Isaacson B et al (2015) Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42:344–355. https://doi.org/10.1016/j.immuni.2015.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tomkovich S, Yang Y, Winglee K et al (2017) Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res 77:2620–2632. https://doi.org/10.1158/0008-5472.CAN-16-3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Drewes JL, Housseau F, Sears CL (2016) Sporadic colorectal cancer: microbial contributors to disease prevention, development and therapy. Br J Cancer 115:273–280. https://doi.org/10.1038/bjc.2016.189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Purcell RV, Visnovska M, Biggs PJ et al (2017) Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci Rep 7:11590. https://doi.org/10.1038/s41598-017-11237-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Abreu MT, Peek RM (2014) Gastrointestinal malignancy and the microbiome. Gastroenterology 146:1534–1546.e3. https://doi.org/10.1053/j.gastro.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  91. Dapito DH, Mencin A, Gwak G-Y et al (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21:504–516. https://doi.org/10.1016/j.ccr.2012.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dejea CM, Wick EC, Hechenbleikner EM et al (2014) Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci U S A 111:18321–18326. https://doi.org/10.1073/pnas.1406199111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yu L-X, Yan H-X, Liu Q et al (2010) Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 52:1322–1333. https://doi.org/10.1002/hep.23845

    Article  CAS  PubMed  Google Scholar 

  94. Johansson MEV, Phillipson M, Petersson J et al (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 105:15064–15069. https://doi.org/10.1073/pnas.0803124105

    Article  PubMed  PubMed Central  Google Scholar 

  95. Prorok-Hamon M, Friswell MK, Alswied A et al (2014) Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut 63:761–770. https://doi.org/10.1136/gutjnl-2013-304739

    Article  CAS  PubMed  Google Scholar 

  96. Bashiardes S, Tuganbaev T, Federici S, Elinav E (2017) The microbiome in anti-cancer therapy. Semin Immunol. https://doi.org/10.1016/j.smim.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  97. Abed J, Emgård JEM, Zamir G et al (2016) Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20:215–225. https://doi.org/10.1016/j.chom.2016.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Karin M, Jobin C, Balkwill F (2014) Chemotherapy, immunity and microbiota—a new triumvirate? Nat Med 20:126–127. https://doi.org/10.1038/nm.3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Greten FR, Eckmann L, Greten TF et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296. https://doi.org/10.1016/j.cell.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  100. Destefano Shields CE, Van Meerbeke SW, Housseau F et al (2016) Reduction of murine colon tumorigenesis driven by enterotoxigenic Bacteroides fragilis using cefoxitin treatment. J Infect Dis 214:122–129. https://doi.org/10.1093/infdis/jiw069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Roy S, Trinchieri G (2017) Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 17:271–285. https://doi.org/10.1038/nrc.2017.13

    Article  CAS  PubMed  Google Scholar 

  102. Tsilimigras MCB, Fodor A, Jobin C (2017) Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol 2:17008. https://doi.org/10.1038/nmicrobiol.2017.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Iida N, Dzutsev A, Stewart CA et al (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342:967–970. https://doi.org/10.1126/science.1240527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vétizou M, Pitt JM, Daillère R et al (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079–1084. https://doi.org/10.1126/science.aad1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Viaud S, Saccheri F, Mignot G et al (2013) The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971–976. https://doi.org/10.1126/science.1240537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yu T, Guo F, Yu Y et al (2017) Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170:548–563.e16. https://doi.org/10.1016/j.cell.2017.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Brown SA, Palmer KL, Whiteley M (2008) Revisiting the host as a growth medium. Nat Rev Microbiol 6:657–666. https://doi.org/10.1038/nrmicro1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rohmer L, Hocquet D, Miller SI (2011) Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 19:341–348. https://doi.org/10.1016/j.tim.2011.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Siegel SJ, Weiser JN (2015) Mechanisms of bacterial colonization of the respiratory tract. Annu Rev Microbiol 69:425–444. https://doi.org/10.1146/annurev-micro-091014-104209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Winter SE, Thiennimitr P, Winter MG et al (2010) Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467:426–429. https://doi.org/10.1038/nature09415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Perez-Chanona E, Jobin C (2014) From promotion to management: the wide impact of bacteria on cancer and its treatment. BioEssays 36:658–664. https://doi.org/10.1002/bies.201400015

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Rakoff-Nahoum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siegel, S.J., Rakoff-Nahoum, S. (2019). Innate Immune Pattern Recognition and the Development of Intestinal Cancer. In: Robertson, E. (eds) Microbiome and Cancer. Current Cancer Research. Humana Press, Cham. https://doi.org/10.1007/978-3-030-04155-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04155-7_14

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-04154-0

  • Online ISBN: 978-3-030-04155-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics