Skip to main content
Log in

Quorum Quenching Enzyme APTM01, an Acylhomoserine-Lactone Acylase from Marine Bacterium of Pseudoalteromonas tetraodonis Strain MQS005

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Quorum sensing is a system of stimuli and response correlated to population density and involves in pathogen infection, colonization, and pathogenesis. Quorum quenching enzymes as quorum sensing inhibitors have been identified in a number of bacteria and been used to control by triggering the pathogenic phenotype. The marine bacteria of Pseudoalteromonas had wide activity of degrading AHLs as a type of signal molecule associated with quorum sensing. We screened many Pseudoalteromonas strains in large scale to explore genes of quorum quenching enzymes from the China seas by whole-genome sequencing rather than genomic library construction. Nine target strains were obtained and an acylases gene APTM01 from the strain MQS005 belonging to PvdQ type on sub-branch in phylogenetic tree. And the heterogenous host containing the vector with target gene could degrade C10-HSL, C12-HSL and OC12-HSL. The obtained AHL acylase gene would be a candidate quorum quenching gene to apply in some fields. We identified that the strains of Pseudoalteromonas have wide AHL-degrading ability depending on quorum quenching. The strains would be a resource to explore new quorum quenching enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jayaraman A, Wood TK (2008) Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 10:145–167. https://doi.org/10.1146/annurev.bioeng.10.061807.160536

    Article  CAS  PubMed  Google Scholar 

  2. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695. https://doi.org/10.1038/nrm907

    Article  CAS  PubMed  Google Scholar 

  3. Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci USA 100(Suppl):14549–14554. https://doi.org/10.1073/pnas.1934514100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chapalain A, Vial L, Laprade N et al (2013) Identification of quorum sensing-controlled genes in Burkholderia ambifaria. Microbiologyopen 2:226–242. https://doi.org/10.1002/mbo3.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:13904–13909. https://doi.org/10.1073/pnas.96.24.13904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schuster M (2011) Global expression analysis of quorum-sensing controlled genes. Methods Mol Biol 692:173–187. https://doi.org/10.1007/978-1-60761-971-0_13

    Article  CAS  PubMed  Google Scholar 

  7. Jimenez JC, Federle MJ (2014) Quorum sensing in group A Streptococcus. Front Cell Infect Microbiol 4:127. https://doi.org/10.3389/fcimb.2014.00127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Case RJ, Labbate M, Kjelleberg S (2008) AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J 2:345–349. https://doi.org/10.1038/ismej.2008.13

    Article  CAS  PubMed  Google Scholar 

  9. Smith R (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60. https://doi.org/10.1016/s1369-5274(03)00008-0

    Article  CAS  PubMed  Google Scholar 

  10. Devescovi G, Bigirimana J, Degrassi G et al (2007) Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice. Appl Environ Microbiol 73:4950–4958. https://doi.org/10.1128/AEM.00105-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hentzer M, Wu H, Andersen JB et al (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815. https://doi.org/10.1093/emboj/cdg366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang WZ, Morohoshi T, Ikenoya M et al (2010) AiiM, a novel class of N-acylhomoserine lactonase from the leaf-associated bacterium Microbacterium testaceum. Appl Environ Microbiol 76:2524–2530. https://doi.org/10.1128/AEM.02738-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69:5941–5949. https://doi.org/10.1128/Aem.69.10.5941-5949.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Czajkowski R, Jafra S (2009) Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochim Pol 56:1–16

    Article  CAS  PubMed  Google Scholar 

  15. Chen F, Gao Y, Chen X et al (2013) Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 14:17477–17500. https://doi.org/10.3390/ijms140917477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Estin ML, Stoltz DA, Zabner J (2010) Paraoxonase 1, quorum sensing, and P. aeruginosa infection: a novel model. Adv Exp Med Biol 660:183–193. https://doi.org/10.1007/978-1-60761-350-3_17

    Article  CAS  PubMed  Google Scholar 

  17. Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97:3526–3531. https://doi.org/10.1073/pnas.060023897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pirhonen M, Flego D, Heikinheimo R, Palva ET (1993) A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J 12:2467–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482. https://doi.org/10.1146/annurev.phyto.41.052002.095652

    Article  CAS  Google Scholar 

  20. Dong YH, Gusti AR, Zhang Q et al (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759. https://doi.org/10.1128/AEM.68.4.1754-1759.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang WZ, Morohoshi T, Someya N, Ikeda T (2012) AidC, a novel N-acylhomoserine lactonase from the potato root-associated cytophaga-flavobacteria-bacteroides (CFB) group bacterium Chryseobacterium sp. strain StRB126. Appl Environ Microbiol 78:7985–7992. https://doi.org/10.1128/AEM.02188-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park SY, Lee SJ, Oh TK et al (2003) AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149:1541–1550. https://doi.org/10.1099/mic.0.26269-0

    Article  CAS  PubMed  Google Scholar 

  23. Khan SR, Farrand SK (2009) The BlcC (AttM) lactonase of Agrobacterium tumefaciens does not quench the quorum-sensing system that regulates Ti plasmid conjugative transfer. J Bacteriol 191:1320–1329. https://doi.org/10.1128/JB.01304-08

    Article  CAS  PubMed  Google Scholar 

  24. Riaz K, Elmerich C, Raffoux A et al (2008) Metagenomics revealed a quorum quenching lactonase QlcA from yet unculturable soil bacteria. Commun Agric Appl Biol Sci 73:3–6

    CAS  PubMed  Google Scholar 

  25. Huang JJ, Petersen A, Whiteley M, Leadbetter JR (2006) Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 72:1190–1197. https://doi.org/10.1128/AEM.72.2.1190-1197.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang X, Enomoto K (2011) Characterization of a gene cluster and its putative promoter region for violacein biosynthesis in Pseudoalteromonas sp. 520P1. Appl Microbiol Biotechnol 90:1963–1971. https://doi.org/10.1007/s00253-011-3203-9

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Ikawa A, Okaue S et al (2008) Quorum sensing signaling molecules involved in the production of violacein by Pseudoalteromonas. Biosci Biotechnol Biochem 72:1958–1961. https://doi.org/10.1271/bbb.80090

    Article  CAS  PubMed  Google Scholar 

  28. Dheilly A, Soum-Soutera E, Klein GL et al (2010) Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6. Appl Environ Microbiol 76:3452–3461. https://doi.org/10.1128/AEM.02632-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Papa R, Parrilli E, Sannino F et al (2013) Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. Res Microbiol 164:450–456. https://doi.org/10.1016/j.resmic.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  30. Guo X, Zheng L, Zhou W et al (2011) A case study on chemical defense based on quorum sensing: antibacterial activity of sponge-associated bacterium Pseudoalteromonas sp. NJ6-3-1 induced by quorum sensing mechanisms. Annu Microbiol 61:247–255. https://doi.org/10.1007/s13213-010-0129-x

    Article  CAS  Google Scholar 

  31. Fineran PC, Slater H, Everson L et al (2005) Bioactivity and phylogeny of the marine bacterial genus Pseudoalteromonas. PhD thesis, Division of Industrial Food Research. National Food Institute (DTU Food), Technical University of Denmark. https://doi.org/10.1111/j.1365-2958.2005.04660.x

    Article  CAS  PubMed  Google Scholar 

  32. Li R, Zhu H, Ruan J et al (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272. https://doi.org/10.1101/gr.097261.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714. https://doi.org/10.1093/bioinformatics/btn025

    Article  CAS  PubMed  Google Scholar 

  34. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  36. Kanehisa M, Goto S, Kawashima S et al (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280. https://doi.org/10.1093/nar/gkh063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tatusov RL, Fedorova ND, Jackson JD et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4:41. https://doi.org/10.1186/1471-2105-4-41

    Article  Google Scholar 

  38. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. https://doi.org/10.1101/gr.2289704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee RD, Jospin G, Lang JM et al (2015) Draft genome sequence of Pseudoalteromonas tetraodonis strain UCD-SED8 (phylum gammaproteobacteria). Genome Announc 3:e01276-15. https://doi.org/10.1128/genomeA.01276-15

    Article  PubMed  PubMed Central  Google Scholar 

  41. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinform. https://doi.org/10.1002/0471250953.bi0203s00

    Article  Google Scholar 

  42. Nicholas KBKBBKB, Jr HBN, Ii DWD et al (1997) GeneDoc: analysis and visualization of genetic variation. EMBnet News 4:14

    Google Scholar 

  43. Sio CF, Otten LG, Cool RH et al (2006) Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun. https://doi.org/10.1128/iai.74.3.1673-1682.2006

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lamont IL, Martin LW (2003) Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology. https://doi.org/10.1099/mic.0.26085-0

    Article  PubMed  Google Scholar 

  45. Solovyev V, Salamov A (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Li RW (ed) Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Biomedical, New Delhi, pp 61–78

    Google Scholar 

  46. Huang Y, Wang J, Luan S (2012) Research status and trends in limnology journals: a bibliometric analysis based on SCI database. Scientometrics 92:735–746

    Article  Google Scholar 

  47. Mei G-Y, Yan X-X, Turak A et al (2010) AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase. Appl Environ Microbiol 76:4933–4942. https://doi.org/10.1128/AEM.00477-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mayer C, Romero M, Muras A, Otero A (2015) Aii20 J, a wide-spectrum thermostable N-acylhomoserine lactonase from the marine bacterium Tenacibaculum sp. 20 J, can quench AHL-mediated acid resistance in Escherichia coli. Appl Microbiol Biotechnol 99:9523–9539. https://doi.org/10.1007/s00253-015-6741-8

    Article  CAS  PubMed  Google Scholar 

  49. Ochiai S, Yasumoto S, Morohoshi T, Ikeda T (2014) AmiE, a novel N-acylhomoserine lactone acylase belonging to the amidase family, from the activated-sludge isolate Acinetobacter sp. strain Ooi24. Appl Environ Microbiol 80:6919–6925. https://doi.org/10.1128/AEM.02190-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nusrat H, Shankar P, Kushwah J et al (2011) Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 21:1001–1011. https://doi.org/10.4014/jmb.1105.05056

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Science and Technology Department (2013B030800001), Shenzhen Science and Technology Project (Grant Nos. JCYJ20140509174140691 and JCYJ20140417113430641), and CAS Adjunct Professorship (2013T1G0038, GJHS2014090100463583).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Wang, Y., Yan, X. et al. Quorum Quenching Enzyme APTM01, an Acylhomoserine-Lactone Acylase from Marine Bacterium of Pseudoalteromonas tetraodonis Strain MQS005. Curr Microbiol 76, 1387–1397 (2019). https://doi.org/10.1007/s00284-019-01739-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01739-z

Navigation