Skip to main content
Log in

Kluyvera georgiana MCC 3673: A Novel Electrogen Enriched in Microbial Fuel Cell Fed with Oilseed Cake

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A novel electrogenic bacterial species, Kluyvera georgiana MCC 3673, was isolated by enrichment in microbial fuel cells (MFC) using oilseed cake as a growth substrate. CHNS analyses showed that oilseed cakes are rich in carbon and nitrogen content. Utilization of these compounds by bacteria was evident from 50% reduction in chemical oxygen demand. The maximum power density of 379 ± 8 mW/m2 was produced from sesame seed cake media with mixed consortia inoculum from lake sediment. Enrichment was carried out for over 15 cycles by renewing the media periodically on drop of the voltage. A pure culture of enriched electrogen was isolated by dilution plate technique. Physiological and biochemical studies were performed on the isolate as per standard methods. Genetic analysis by 16S rDNA sequencing revealed that this organism is closely related to Kluyvera georgiana. When inoculated in MFC as pure culture, the maximum power density of 158 ± 11 mW/m2 and 172 ± 13 mW/m2 was produced with sesame and groundnut oilseed cake media, respectively. The performance increased in LB media producing maximum power density of 394 ± 6 mW/m2. This bacterium has also scope for application in wide range of MFC as it can produce electricity even in suspended culture. To our knowledge, this is the first report on bio-electricity generation using oilseed cake as substrate in MFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond 84(571):260–276. https://doi.org/10.1098/rspb.1911.0073

    Article  Google Scholar 

  2. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192. https://doi.org/10.1021/es0605016

    Article  CAS  PubMed  Google Scholar 

  3. Bretschger O, Osterstock JB, Pinchak WE, Ishii S, Nelson KE (2010) Microbial fuel cells and microbial ecology: applications in ruminant health and production research. Microb Ecol 59(3):415–427. https://doi.org/10.1007/s00248-009-9623-8

    Article  CAS  PubMed  Google Scholar 

  4. Rabaey K, Boon N, Siciliano SD, Verstraete W, Verhaege M (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382. https://doi.org/10.1128/AEM.70.9.5373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101. https://doi.org/10.1038/nature03661

    Article  CAS  PubMed  Google Scholar 

  6. Shi L, Chen B, Wang Z, Elias DA, Mayer MU, Gorby YA, Ni S, Lower BH, Kennedy DW, Wunschel DS, Mottaz HM, Marshall MJ, Hill EA, Beliaev AS, Zachara JM, Fredrickson JK, Squier TC (2006) Isolation of a high-affinity functional protein complex between OmcA and MtrC: Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J Bacteriol 188(13):4705–4714. https://doi.org/10.1128/JB.01966-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38(7):2281–2285. https://doi.org/10.1021/es034923g

    Article  CAS  PubMed  Google Scholar 

  8. Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30(2):145–152. https://doi.org/10.1016/S0141-0229(01)00478-1

    Article  CAS  Google Scholar 

  9. Mani P, Kumar VTF, Keshavarz T, Chandra TS, Kyazze G (2018) The role of natural laccase redox mediators in simultaneous dye decolorization and power production in microbial fuel cells. Energies 11(12):3455. https://doi.org/10.3390/en11123455

    Article  Google Scholar 

  10. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy 31(12):1632–1640. https://doi.org/10.1016/j.ijhydene.2005.12.006

    Article  CAS  Google Scholar 

  11. Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE (2009) Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res 43(5):1480–1488. https://doi.org/10.1016/j.watres.2008.12.037

    Article  CAS  PubMed  Google Scholar 

  12. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Min B, Huang L, Angelidaki I (2009) Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Appl Environ Microbiol 75(11):3389–3395. https://doi.org/10.1128/AEM.02240-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Z, Lee T, Lim B, Choi C, Park J (2014) Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate. Biotechnol Biofuels 7(1):1–10. https://doi.org/10.1186/1754-6834-7-9

    Article  CAS  Google Scholar 

  15. Sunil L, Prakruthi A, Prashant Kumar PK, Gopala Krishna AG (2016) Development of health foods from oilseed cakes. J Food Process Technol 7(11):1–6. https://doi.org/10.4172/2157-7110.1000631

    Article  CAS  Google Scholar 

  16. Sunil L, Appaiah P, Prasanth Kumar PK, Gopala Krishna AG (2015) Preparation of food supplements from oilseed cakes. J Food Sci Technol 52(5):2998–3005. https://doi.org/10.1007/s13197-014-1386-7

    Article  CAS  PubMed  Google Scholar 

  17. Ramachandran S, Singh SK, Larroche C, Soccol CR, Pandey A (2007) Oil cakes and their biotechnological applications—a review. Bioresour Technol 98(10):2000–2009. https://doi.org/10.1016/j.biortech.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  18. Prescott H (2002) Laboratory exercises in microbiology, 5th edn. The McGraw-Hill, New York

    Google Scholar 

  19. Funke G, Funke-Kissling P (2005) Performance of the new VITEK 2 GP card for identification of medically relevant gram-positive cocci in a routine clinical laboratory. J Clin Microbiol 43(1):84–88. https://doi.org/10.1128/JCM.43.1.84-88.2005

    Article  PubMed  PubMed Central  Google Scholar 

  20. Green MR, Sambrook J (2012) Molecular cloning. A laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  21. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74(8):2461–2470. https://doi.org/10.1128/AEM.02272-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hall TA (1999) Bio Edit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acid Symposium, vol. 41, Oxford University Press, pp. 95–8

  24. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thapa BS, Seetharaman S, Chetty R, Chandra TS (2019) Xerogel based catalyst for improved cathode performance in microbial fuel cells. Enzyme Microb Technol 124:1–8. https://doi.org/10.1016/j.enzmictec.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  26. Kim JR, Min B, Logan BE (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68(1):23–30. https://doi.org/10.1007/s00253-004-1845-6

    Article  CAS  PubMed  Google Scholar 

  27. Müller HE, Brenner DJ, Fanning GR, Grimont PA, Kämpfer P (1996) Emended description of Buttiauxella agrestis with recognition of six new species of Buttiauxella and two new species of Kluyvera: Buttiauxella ferragutiae sp. nov., Buttiauxella gaviniae sp. nov., Buttiauxella brennerae sp. nov., Buttiauxella izardii sp. Int J Syst Bacteriol 46(1):50–63. https://doi.org/10.1099/00207713-46-1-50

    Article  PubMed  Google Scholar 

  28. Rodríguez MM, Power P, Sader H, Galleni M, Gutkind G (2010) Novel chromosome-encoded CTX-M-78 β-lactamase from a Kluyvera georgiana clinical isolate as a putative origin of CTX-M-25 subgroup. Antimicrob Agents Chemotherapy 54(7):3070–3071. https://doi.org/10.1128/AAC.01615-09

    Article  CAS  Google Scholar 

  29. Jong BC, Liew PWY, Juri ML, Kim BH, Mohd. Dzomir AZ, Leo KW, Awang MR (2011) Performance and microbial diversity of palm oil mill effluent microbial fuel cell. Lett Appl Microbiol 53(6):660–667. https://doi.org/10.1111/j.1472-765X.2011.03159.x

    Article  CAS  PubMed  Google Scholar 

  30. Wang M, Yan Z, Huang B, Zhao J, Liu R (2013) Electricity generation by microbial fuel cells fuelled with Enteromorpha prolifera hydrolysis. Int J Electrochem Sci 8(2):2104–2111. https://doi.org/10.1016/j.biombioe.2011.09.026

    Article  CAS  Google Scholar 

  31. Ren Z, Ward TE, Regan JM (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41(13):4781–4786. https://doi.org/10.1021/es070577h

    Article  CAS  PubMed  Google Scholar 

  32. Niessen J, Schröder U, Scholz F (2004) Exploiting complex carbohydrates for microbial electricity generation—a bacterial fuel cell operating on starch. Electrochem Commun 6(9):955–958. https://doi.org/10.1016/j.elecom.2004.07.010

    Article  CAS  Google Scholar 

  33. Zuo Y, Maness P-C, Logan BE (2006) Electricity production from steam exploded corn stover biomass. Energy Fuels 20(12):1716. https://doi.org/10.1021/ef0600331

    Article  CAS  Google Scholar 

  34. Zhang Y, Olias LG, Kongjan P, Angelidaki I (2011) Submersible microbial fuel cell for electricity production from sewage sludge. Water Sci Technol 64(1):50–55. https://doi.org/10.2166/wst.2011.678

    Article  CAS  PubMed  Google Scholar 

  35. Finkelstein DA, Tender LM, Zeikus JG (2006) Effect of electrode potential on electrode-reducing microbiota. Environ Sci Technol 40(22):6990–6995. https://doi.org/10.1021/es061146m

    Article  CAS  PubMed  Google Scholar 

  36. Gregoire KP, Glaven SM, Hervey J, Lin B, Tender LM (2014) Enrichment of a high-current density denitrifying microbial biocathode. J Electrochem Soc 161(13):H3049–H3057. https://doi.org/10.1149/2.0101413jes

    Article  CAS  Google Scholar 

  37. Alatraktchi FAZA, Zhang Y, Noori JS, Angelidaki I (2012) Surface area expansion of electrodes with grass-like nanostructures and gold nanoparticles to enhance electricity generation in microbial fuel cells. Bioresour Technol 123:177–183. https://doi.org/10.1016/j.biortech.2012.07.048

    Article  CAS  PubMed  Google Scholar 

  38. Sharma T, Mohana Reddy AL, Chandra TS, Ramaprabhu S (2008) Development of carbon nanotubes and nanofluids based microbial fuel cell. Int J Hydrogen Energy 33(22):6749–6754. https://doi.org/10.1016/j.ijhydene.2008.05.112

    Article  CAS  Google Scholar 

  39. Wang R, Yan M, Li H, Zhang L, Peng B, Sun J, Liu D, Liu S (2018) FeS2 nanoparticles decorated graphene as microbial-fuel-cell anode achieving high power density. Adv Mater 30(22):1–7. https://doi.org/10.1002/adma.201800618

    Article  CAS  Google Scholar 

  40. Hernandez-Flores G, Solorza-Feria O, Ponce-Noyola MT (2013) Improvement of microbial fuel cell characteristics by inoculum enrichment and selection of anodic materials. J New Mater Electrochem Syst 129(18):121–129. https://doi.org/10.14447/jnmes.v18i3.357

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra T.S..

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 323 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapa, B.S., T.S., C. Kluyvera georgiana MCC 3673: A Novel Electrogen Enriched in Microbial Fuel Cell Fed with Oilseed Cake. Curr Microbiol 76, 650–657 (2019). https://doi.org/10.1007/s00284-019-01673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01673-0

Navigation