Skip to main content
Log in

Anaerobic Degradation of Chloroanilines by Geobacter sp. KT5

  • Published:
Current Microbiology Aims and scope Submit manuscript

A Correction to this article was published on 22 March 2019

This article has been updated

Abstract

A chloroaniline-degrading bacterial strain isolated from polluted sediment in the Mekong River was identified as Geobacter sp. KT5. The obtained isolate was found to utilize a wide range of trichloroanilines (TCAs), dichloroanilines (DCAs), monochloroanilines (MACs), and aniline as sources of carbon and energy. It also used Fe(III) as a terminal electron acceptor under anaerobic conditions. Among the chlorinated anilines, KT5 utilized 2,3,4-trichloroaniline (234TCA) with the highest rate (2.48 ± 0.32 µM day−1). On determining the degradation pathway for chloroanilines (CAs) in Geobacter sp. KT5, it showed that the removal of ortho and para halogen was dominant. Firstly, KT5 ortho-dechlorinated some TCAs to DCAs, and then reductively transformed them into MACs and aniline prior to complete degradation with the iron reduction stoichiometry and release of nitrogen and chlorine. The KT5 augmentation in sediment slurry enhanced the degradation of CAs and aniline; however, the anaerobic degradation rates in slurry were significantly lower compared to those in liquid media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 22 March 2019

    The original version of this article unfortunately contained a mistake. The authors would like to correct the heading “Anaerobic Biodegradation Intermediates, Enzyme Activities, and the Biodegradation Pathways for CAs” in the Results section. The correct heading should read as “Anaerobic Biodegradation Intermediates and the Biodegradation Pathways for CAs”.

References

  1. Bhatt P, Kumar MS, Mudliar S, Chakrabarti T (2007) Biodegradation of chlorinated compounds—a review. Crit Rev Environ Sci Technol 37:165–198

    Article  CAS  Google Scholar 

  2. Boehncke A, Kielhorn J, Konnecker G, Pohlenz-Michel C, Mangelsdorf I (2003) 4-Chloroaniline. Concise International Chemical Assessment Document 48. World Health Organization, Geneva

  3. Bollag JM, Russel S (1976) Aerobic versus anaerobic metabolism of halogenated anilines by a Paracoccus sp. Microb Ecol 3:65–73

    Article  CAS  PubMed  Google Scholar 

  4. Boon N, Goris J, De Vos P, Verstraete W, Top EM (2001) Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae. Appl Environ Microbiol 67:1107–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Braunschweig J, Bosch J, Heister K, Kuebeck C, Meckenstock RU (2012) Reevaluation of colorimetric iron determination methods commonly used in geomicrobiology. J Mirobiol Methods 89:41–48

    Article  CAS  Google Scholar 

  6. Brown JF Jr, Feng H, Bedard DL, Brennan MJ, Carnahan JC, May RJ (1987) Environmental dechlorination of PCBs. Environ Toxicol Chem 6:579–593

    Article  CAS  Google Scholar 

  7. Bunce NJ, Merrick RL, Corke CT (1983) Reductive transformations of nitrate with 3,4-dichloroaniline and related compounds by Escherichia coli. J Agric Food Chem 31(5):1071–1075

    Article  CAS  Google Scholar 

  8. Duc HD (2016) Biodegradation of 3-chloroaniline by suspended cells and biofilm of Acinetobacter baumannii GFJ1. Appl Biol Chem 59(5):703–709

    Article  CAS  Google Scholar 

  9. Duc HD (2017) Degradation of chlorotoluenes by Comamonas testosterone KT5. Appl Biol Chem 60(4):457–465

    Article  Google Scholar 

  10. Ha DD (2018) Anaerobic degradation of 2,4-dichlorophenoxyacetic acid by Thauera sp. DKT Biodegradation 29:499–510

    Article  CAS  PubMed  Google Scholar 

  11. Hongsawat P, Vangnai AS (2011) Biodegradation pathways of chloroanilines by Acinetobacter baylyi strain GFJ2. J Hazard Mater 186:1300–1307

    Article  CAS  PubMed  Google Scholar 

  12. Ismail ZZ, Pavlostathis SG (2010) Influence of sulfate reduction on the microbial dechlorination of pentachloroaniline in a mixed anaerobic culture. Biodegradation 21:43–57

    Article  CAS  PubMed  Google Scholar 

  13. Kuhn EP, Suflita JM (1989) Sequential reductive dehalogenation of chloroanilines by microorganisms from a methanogenic aquifer. Environ Sci Technol 23:848–852

    Article  CAS  Google Scholar 

  14. Kuhn EP, Townsend GT, Suflita JM (1990) Effect of sulfate and organic carbon supplements on reductive dehalogenation of chloroanilines in anaerobic aquifer slurries. Appl Environ Microbiol 56:2630–2637

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lacorte S, Perrot MC, Fraisse D, Barcelo D (1999) Determination of chlorobenzidines, in industrial effluent by solid-phase extraction and liquid chromatography with electrochemical and mass spectrometric detection. J Chromatogr A 833:181–194

    Article  CAS  Google Scholar 

  16. Loidl M, Ditzelmüller C, Ditzelmüller G, Ferschl A, Streichsbier F (1990) Degradation of aniline and monochlorinated anilines by soil-born Pseudomonas acidovorans strains. Arch Microbiol 155:56–61

    Article  CAS  Google Scholar 

  17. Minard RD, Russel S, Bollag JM (1977) Chemical transformation of 4-chloroaniline to a triazene in a bacterial culture medium. J Agric Food Chem 25:841–844

    Article  CAS  PubMed  Google Scholar 

  18. Morrison RT, Boyd RN (1981) Organic chemistry, 3rd edn. Allyn & Bacon, Boston

    Google Scholar 

  19. Piet GJ, Smeenk JGMM (1985) Behavior of organic pollutants in pretreated Rhine water during dune infiltration. In: Ward CH, Giger W, McCarty PL (eds) Ground water quality. Wiley, New York

    Google Scholar 

  20. Reber H, Helm V, Karanth NGK (1979) Comparative studies on the metabolism of aniline and chloroanilines by Pseudomonas multivorans strain An 1. Eur J Appl Microbiol Biotechnol 7:181–189

    Article  CAS  Google Scholar 

  21. Schukat B, Janke D, Krebs D, Fritsche W (1983) Cometabolic degradation of 2- and 3-chloroaniline because of glucose metabolism by Rhodococcus sp. An 117. Curr Microbiol 9:81–86

    Article  CAS  Google Scholar 

  22. Struijs J, Rogers JE (1989) Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol-acclimated pond sediment. Appl Environ Microbiol 55:2527–2531

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Susarla S, Yoneza Y, Masunage S (1998) Reductive transformations of halogenated aromatics in anaerobic estuarine sediment: kinetics, products and pathways. Water Res 32(3):639–648

    Article  CAS  Google Scholar 

  24. Susarla S, Yonezawa Y, Masunaga S (1997) Reductive dehalogenation of chloroanilines in anaerobic estuarine sediment. Environ Technol 18(1):75–83

    Article  CAS  Google Scholar 

  25. Travkin V, Baskunov BP, Golovlev EL, Boersma MG, Boeren S, Vervoort J, van Berkel WJ, Rietjens IM, Golovleva LA (2002) Reductive deamination as a new step in the anaerobic microbial degradation of halogenated anilines. FEMS Microbiol Lett 209:307–312

    Article  CAS  PubMed  Google Scholar 

  26. Yao XF, Khan F, Pandey R, Pandey J, Mourant RG, Guo RKJJH, Russell RJ, Oakeshott JG, Pandey G (2011) Degradation of dichloroaniline isomers by a newly isolated strain Bacillus megaterium IMT21. Microbiology 157:721–726

    Article  CAS  PubMed  Google Scholar 

  27. Zeyer J, Wasserfallen A, Timmis KN (1985) Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl Environ Microbiol 50:447–453

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang LL, He D, Chen JM, Liu Y (2010) Biodegradation of 2-chloroaniline, 3-chloroaniline, and 4-chloroaniline by a novel strain Delftia tsuruhatensis H1. J Hazard Mater 179:875–882

    Article  CAS  PubMed  Google Scholar 

  29. Zoeteman BCJ, Harmsen K, Linders JBHJ, Morra CFH, Slooff W (1980) Persistent organic pollutants in river water and ground water of the Netherlands. Chemosphere 9:231–249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the Center for Chemical Analysis, Dong Thap University, for all their supports and encouragements during their working on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Danh Duc.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha Danh, D., Nguyen Thi, O. Anaerobic Degradation of Chloroanilines by Geobacter sp. KT5. Curr Microbiol 76, 248–257 (2019). https://doi.org/10.1007/s00284-018-1617-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1617-7

Navigation