Skip to main content

Advertisement

Log in

Differences in Carbohydrates Utilization and Antibiotic Resistance Between Streptococcus macedonicus and Streptococcus thermophilus Strains Isolated from Dairy Products in Italy

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Streptococcus thermophilus and S. macedonicus are the only two species of the genus related to food productions so far known. In the present study, eight S. thermophilus and seven S. macedonicus strains isolated from dairy environments in Italy were compared in order to evidence possible species-specific technological characteristics. Their capability to use lactose, galactose, fructose, and glucose, sugars commonly present in foods and two carbohydrates considered as prebiotics, xylose and inulin, along with the respective growth kinetics were studied. Results showed a luxuriant growth on lactose and different behaviors on galactose, glucose, and fructose. No growth on inulin and xylose was recorded, which is a positive feature for strains intended to be used as starter cultures. Growth parameters, namely, λ, µmax, and Nmax, were estimated by using the Gompertz model. Antibiotic resistance to 14 drugs revealed an overall similar behavior between the two species with only a marked difference regarding gentamycin. Antimicrobial activity was also tested against six deleterious bacterial strains, but none of the strains evidenced inhibitory capabilities. The results presented here could be helpful to compare technological potentialities of the two species and to choose strains of the most suitable species for selected microbiological food transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Holzapfel W, Alessandria V (2015) Advances in fermented foods and beverages: improving quality, technologies and health benefits. Woodhead Publishing, Waltham

    Google Scholar 

  2. Bovo B, Nardi T, Fontana F et al (2012) Acidification of grape marc for alcoholic beverage production: effects on indigenous microflora and aroma profile after distillation. Int J Food Microbiol 152:100–106. https://doi.org/10.1016/j.ijfoodmicro.2011.10.006

    Article  PubMed  CAS  Google Scholar 

  3. Stalheim T, Ballance S, Christensen BE, Granum PE (2009) Sphagnan - a pectin-like polymer isolated from Sphagnum moss can inhibit the growth of some typical food spoilage and food poisoning bacteria by lowering the pH. J Appl Microbiol 106:967–976. https://doi.org/10.1111/j.1365-2672.2008.04057.x

    Article  PubMed  CAS  Google Scholar 

  4. Tang J, Wang XC, Hu Y et al (2017) Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula. Bioresour Technol 224:544–552. https://doi.org/10.1016/J.BIORTECH.2016.11.111

    Article  PubMed  CAS  Google Scholar 

  5. Zhalnina K, Dias R, de Quadros PD et al (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol 69:395–406. https://doi.org/10.1007/s00248-014-0530-2

    Article  PubMed  CAS  Google Scholar 

  6. Tsakalidou E, Zoidou E, Pot B et al (1998) Identification of streptococci from Greek Kasseri cheese and description of Streptococcus macedonicus sp. nov. Int J Syst Bacteriol 48:519–527. https://doi.org/10.1099/00207713-48-2-519

    Article  PubMed  CAS  Google Scholar 

  7. Pacini F, Cariolato D, Andrighetto C, Lombardi A (2006) Occurrence of Streptococcus macedonicus in Italian cheeses. FEMS Microbiol Lett 261:69–73. https://doi.org/10.1111/j.1574-6968.2006.00330.x

    Article  PubMed  CAS  Google Scholar 

  8. Blaiotta G, Sorrentino A, Ottombrino A, Aponte M (2011) Short communication: technological and genotypic comparison between Streptococcus macedonicus and Streptococcus thermophilus strains coming from the same dairy environment. J Dairy Sci 94:5871–5877. https://doi.org/10.3168/jds.2011-4630

    Article  PubMed  CAS  Google Scholar 

  9. De Vuyst L, Tsakalidou E (2008) Streptococcus macedonicus, a multi-functional and promising species for dairy fermentations. Int Dairy J 18:476–485. https://doi.org/10.1016/j.idairyj.2007.10.006

    Article  CAS  Google Scholar 

  10. Georgalaki MD, Sarantinopoulos P, Ferreira ES et al (2000) Biochemical properties of Streptococcus macedonicus strains isolated from Greek Kasseri cheese. J Appl Microbiol 88:817–825. https://doi.org/10.1046/j.1365-2672.2000.01055.x

    Article  PubMed  CAS  Google Scholar 

  11. Lombardi A, Gatti M, Rizzotti L et al (2004) Characterization of Streptococcus macedonicus strains isolated from artisanal Italian raw milk cheeses. Int Dairy J 14:967–976. https://doi.org/10.1016/j.idairyj.2004.04.005

    Article  CAS  Google Scholar 

  12. Settanni L, Franciosi E, Cavazza A et al (2011) Extension of Tosèla cheese shelf-life using non-starter lactic acid bacteria. Food Microbiol 28:883–890. https://doi.org/10.1016/j.fm.2010.12.003

    Article  PubMed  Google Scholar 

  13. El Hatmi H, Jrad Z, Oussaief O et al (2018) Fermentation of dromedary camel (Camelus dromedarius) milk by Enterococcus faecium, Streptococcus macedonicus as a potential alternative of fermented cow milk. LWT 90:373–380. https://doi.org/10.1016/j.lwt.2017.12.040

    Article  CAS  Google Scholar 

  14. Treu L, Vendramin V, Bovo B et al (2014) Whole-genome sequences of Streptococcus thermophilus strains TH1435 and TH1436, isolated from raw goat milk. Genome Announc. https://doi.org/10.1128/genomeA.e01129-13

    Article  PubMed  PubMed Central  Google Scholar 

  15. Treu L, Vendramin V, Bovo B et al (2014) Genome sequences of four Italian Streptococcus thermophilus strains of dairy origin. Genome Announc. https://doi.org/10.1128/genomeA.00126-14

    Article  PubMed  PubMed Central  Google Scholar 

  16. Treu L, Vendramin V, Bovo B et al (2014) Genome sequences of Streptococcus thermophilus strains MTH17CL396 and M17PTZA496 from fontina, an Italian PDO cheese. Genome Announc 2. https://doi.org/10.1128/genomeA.e00067-14

  17. Treu L, de Diego-Díaz B, Papadimitriou K et al (2017) Whole-genome sequences of three Streptococcus macedonicus strains isolated from Italian cheeses in the Veneto region. Genome Announc 5:e01358-17. https://doi.org/10.1128/genomeA.01358-17

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vendramin V, Treu L, Bovo B et al (2014) Whole-genome sequence of Streptococcus macedonicus strain 33MO, isolated from the curd of Morlacco cheese in the Veneto region (Italy). Genome Announc. https://doi.org/10.1128/genomeA.00746-14

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881. https://doi.org/10.1111/j.1472-765X.2008.02537.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. National Committee for Clinical Laboratory Standards (1991) Performance standards for antimicrobial disk susceptibility tests, vol 11. NCLLS, Villanova

    Google Scholar 

  21. Coyle MB, Lampe MF, Aitken CL et al (1976) Reproducibility of control strains for antibiotic susceptibility testing. Antimicrob Agents Chemother 10:436–440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Maragkoudakis PA, Nardi T, Bovo B et al (2013) Biodiversity, dynamics and ecology of bacterial community during grape marc storage for the production of grappa. Int J Food Microbiol 162:143–151. https://doi.org/10.1016/j.ijfoodmicro.2013.01.005

    Article  PubMed  CAS  Google Scholar 

  23. Vanden Berghe DA, Vlietinck AJ (1991) Screening methods for antibacterial and antiviral agents from higher plants. In: Dey PM, Harbone DJ (eds) Methods in plant biochemistry. Academic Press, London, pp 47–69

    Google Scholar 

  24. Overbeek R, Olson R, Pusch GD et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. https://doi.org/10.1093/nar/gkt1226

    Article  PubMed  Google Scholar 

  25. de Jong A, van Hijum SAFT, Bijlsma JJE et al (2006) BAGEL: a web-based bacteriocin genome mining tool. Nucleic Acids Res. https://doi.org/10.1093/nar/gkl237

    Article  PubMed  PubMed Central  Google Scholar 

  26. Erkus O, Okuklu B, Yenidunya AF, Harsa S (2014) High genetic and phenotypic variability of Streptococcus thermophilus strains isolated from artisanal Yuruk yoghurts. LWT - Food Sci Technol 58:348–354. https://doi.org/10.1016/j.lwt.2013.03.007

    Article  CAS  Google Scholar 

  27. Hutkins RW, Morris HA (1987) Carbohydrate metabolism by Streptococcus thermophilus: a review. J Food Prot 50:876–884

    Article  CAS  Google Scholar 

  28. de Vin F, Radstrom P, Herman L, De Vuyst L (2005) Molecular and Biochemical analysis of the galactose phenotype of dairy Streptococcus thermophilus strains reveals four different fermentation profiles. Appl Environ Microbiol 71:3659–3667. https://doi.org/10.1128/AEM.71.7.3659-3667.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wu Q, Cheung CKW, Shah NP (2015) Towards galactose accumulation in dairy foods fermented by conventional starter cultures: challenges and strategies. Trends Food Sci Technol 41:24–36

    Article  CAS  Google Scholar 

  30. Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci Food Saf 10:2–16. https://doi.org/10.1111/j.1541-4337.2010.00135.x

    Article  CAS  Google Scholar 

  31. Kolida S, Tuohy K, Gibson GR (2002) Prebiotic effects of inulin and oligofructose. Br J Nutr 87:S193. https://doi.org/10.1079/BJN/2002537

    Article  PubMed  CAS  Google Scholar 

  32. Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health 109:309–318. https://doi.org/10.1179/2047773215Y.0000000030

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zoumpopoulou G, Foligne B, Christodoulou K et al (2008) Lactobacillus fermentum ACA-DC 179 displays probiotic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and Salmonella infection in murine models. Int J Food Microbiol 121:18–26. https://doi.org/10.1016/j.ijfoodmicro.2007.10.013

    Article  PubMed  CAS  Google Scholar 

  34. Ozteber M, Başbülbül G (2017) Antibiotic resistance patterns of lactic acid bacteria isolated from different fermented milk products of Turkish origin. Microbiol Res J Int 20:1–13. https://doi.org/10.9734/MRJI/2017/33221

    Article  Google Scholar 

  35. Flórez AB, Mayo B (2017) Antibiotic resistance-susceptibility profiles of Streptococcus thermophilus Isolated from raw milk and genome analysis of the genetic basis of acquired resistances. Front Microbiol 8:2608. https://doi.org/10.3389/fmicb.2017.02608

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tosi L, Berruti G, Danielsen M et al (2007) Susceptibility of Streptococcus thermophilus to antibiotics. Antonie Van Leeuwenhoek 92:21–28. https://doi.org/10.1007/s10482-006-9130-6

    Article  PubMed  CAS  Google Scholar 

  37. Cox G, Wright GD (2013) Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol 303:287–292. https://doi.org/10.1016/J.IJMM.2013.02.009

    Article  PubMed  CAS  Google Scholar 

  38. Ammor MS, Belén Flórez A, Mayo B (2007) Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24:559–570. https://doi.org/10.1016/j.fm.2006.11.001

    Article  PubMed  CAS  Google Scholar 

  39. van Reenen CA, Dicks LMT (2011) Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? A review. Arch Microbiol 193:157–168. https://doi.org/10.1007/s00203-010-0668-3

    Article  PubMed  CAS  Google Scholar 

  40. Papadimitriou K, Anastasiou R, Mavrogonatou E et al (2014) Comparative genomics of the dairy isolate Streptococcus macedonicus ACA-DC 198 against related members of the Streptococcus bovis/Streptococcus equinus complex. BMC Genom. https://doi.org/10.1186/1471-2164-15-272

    Article  Google Scholar 

  41. Sozzi T (1980) Antibiotic resistance of yogurt starter cultures Streptococcus Thermophilus and Lactobacillus Bulgaricus. Appl Environ Microbiol 40:862–865

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Shah NP (2007) Functional cultures and health benefits. Int Dairy J 17:1262–1277. https://doi.org/10.1016/j.idairyj.2007.01.014

    Article  Google Scholar 

  43. Rossi F, Marzotto M, Cremonese S et al (2013) Diversity of Streptococcus thermophilus in bacteriocin production; inhibitory spectrum and occurrence of thermophilin genes. Food Microbiol 35:27–33. https://doi.org/10.1016/j.fm.2013.02.006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Sudeb Saha for helpful discussion and Veneto Agricoltura for providing some of the strains. This study was financially supported by MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca), DOR Project Numbers 60A08-5771/11 and 60A08-0032/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana Corich.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarrah, A., Treu, L., Giaretta, S. et al. Differences in Carbohydrates Utilization and Antibiotic Resistance Between Streptococcus macedonicus and Streptococcus thermophilus Strains Isolated from Dairy Products in Italy. Curr Microbiol 75, 1334–1344 (2018). https://doi.org/10.1007/s00284-018-1528-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1528-7

Navigation