Skip to main content

Advertisement

Log in

Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? A review

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Probiotics are live cultures, usually lactic acid bacteria, which are ingested to promote a healthy gastrointestinal tract. These organisms require certain traits to survive and compete in this niche, but these traits may be transferred to other microbiota in the gastrointestinal tract (GIT). Similarly, virulence factors from pathogens may be acquired by probiotic strains. Bacteria have developed a plethora of methods to transfer genetic material between strains, species and genera. In this review, the possible factors that may be exchanged and the methods of exchange are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammor MS, Belén Flórez A, Mayo B (2007) Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol 24:559–570

    CAS  PubMed  Google Scholar 

  • Archimbaud C, Shankar N, Forestier C, Baghdayan A, Gilmore MS, Charbonne F, Joly B (2002) In vitro adhesive properties and virulence factors of Enterococcus faecalis strains. Res Microbiol 153:75–80

    CAS  PubMed  Google Scholar 

  • Arias CA, Cortes L, Murray BE (2007) Chaining in enterococci revisited: correlation between chain length and gelatinase phenotype, and gelE and fsrB genes among clinical isolates of Enterococcus faecalis. J Med Microbiol 56:286–288

    PubMed  Google Scholar 

  • Arias CA, Panesso D, Singh KV, Rice LB, Murray BE (2009) Cotransfer of antibiotic resistance genes and a hyl Efm -containing virulence plasmid in Enterococcus faecium. Antimicrob Agents Chemother 53:4240–4246

    CAS  PubMed  Google Scholar 

  • Arnold DL, Jackson RW, Waterfield NR, Mansfield JW (2007) Evolution of microbial virulence: the benefits of stress. Trends Genet 23:293–300

    CAS  PubMed  Google Scholar 

  • Bahl MI, Sørensen SJ, Hansen LH, Licht TR (2004) Effect of tetracycline on transfer and establishment of the tetracycline-inducible conjugative transposon Tn916 in the guts of gnotobiotic rats. Appl Environ Microbiol 70:758–764

    CAS  PubMed  Google Scholar 

  • Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651

    CAS  PubMed  Google Scholar 

  • Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738

    CAS  PubMed  Google Scholar 

  • Bennik MHJ, Smid EJ, Gorris LGM (1997) Vegetable-associated Pediococcus parvulus produces pediocin PA-1. Appl Environ Microbiol 63:2074–2076

    CAS  PubMed  Google Scholar 

  • Bernardeau M, Vernoux JP, Henri-Dubernet S, Gueguen M (2008) Safety assessment of dairy microorganisms: the Lactobacillus genus. Int J Food Microbiol 126:278–285

    CAS  PubMed  Google Scholar 

  • Bleiweis AS, Zimmerman LN (1964) Properties of proteinase from Streptococcus faecalis var. liquefaciens. J Bacteriol 88:653–659

    CAS  PubMed  Google Scholar 

  • Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Masuy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P (2004a) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558

    CAS  PubMed  Google Scholar 

  • Bolotin A, Quinquis B, Sorokin A, Ehrlich DS (2004b) Recent genetic transfer between Lactococcus lactis and enterobacteria. J Bacteriol 186:6671–6677

    CAS  PubMed  Google Scholar 

  • Bourgeois-Nicolaos N, Moubareck C, Mangeney N, Butel M, Doucet-Populaire F (2006) Comparative study of vanA gene transfer from Enterococcus faecium to Enterococcus faecalis and to Enterococcus faecium in the intestine of mice. FEMS Microbiol Lett 254:27–33

    CAS  PubMed  Google Scholar 

  • Bron PA, Molenaar D, De Vos WM, Kleerebezem M (2006) DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. J Appl Microbiol 100:728–738

    CAS  PubMed  Google Scholar 

  • Brusa T, Canzi E, Allievi L, Del Puppo E, Ferrari A (1993) Methanogens in the human intestinal tract and oral cavity. Curr Microbiol 27:261–265

    Google Scholar 

  • Burrus V, Waldor MK (2004) Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol 155:376–386

    CAS  PubMed  Google Scholar 

  • Casas IA, Zimmerman LN (1969) Dependence of protease secretion by Streptococcus faecalis var. liquefaciens on arginine and its possible relation to site of synthesis. J Bacteriol 97:307–312

    CAS  PubMed  Google Scholar 

  • Chow JW, Thal LA, Perri MB, Vazquez JA, Donabedian SM, Clewell DB, Zervos MJ (1993) Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother 37:2474–2477

    CAS  PubMed  Google Scholar 

  • Clewell DB, Francia MV, Flannagan SE, An FY (2002) Enterococcal plasmid transfer: sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue. Plasmid 48:193–201

    CAS  PubMed  Google Scholar 

  • Coburn PS, Baghdayan AS, Dolan GT, Shankar N (2007) Horizontal transfer of virulence genes encoded on the Enterococcus faecalis pathogenicity island. Mol Microbiol 63:530–544

    CAS  PubMed  Google Scholar 

  • Courvalin P (2006) Vancomycin resistance in gram-positive cocci. Clin Infect Dis 42(Suppl 1):S25–S34

    Google Scholar 

  • Creti R, Imperi M, Bertuccini L, Fabretti F, Orefici G, Di Rosa R, Baldassarri L (2004) Survey for virulence determinants among Enterococcus faecalis isolated from different sources. J Med Microbiol 53:13–20

    CAS  PubMed  Google Scholar 

  • Danielsen M, Wind A (2003) Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol 82:1–11

    CAS  PubMed  Google Scholar 

  • de Sousa CP (2003) Pathogenicity mechanisms of prokaryotic cells: an evolutionary view. Braz J Infect Dis 7:23–31

    Google Scholar 

  • Dicks LMT, Botes M (2010) Probiotic lactic acid bacteria in the gastrointestinal tract: health benefits, safety and mode of action. Benef Microbes 1:11–29

    Google Scholar 

  • Doucet-Populaire F, Trieu-Cuot P, Dosbaa I, Andremont A, Courvalin P (1991) Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob Agents Chemother 35:185–187

    CAS  PubMed  Google Scholar 

  • Doucet-Populaire F, Trieu-Cuot P, Andremont A, Courvalin P (1992) Conjugal transfer of plasmid DNA from Enterococcus faecalis to Escherichia coli in digestive tracts of gnotobiotic mice. Antimicrob Agents Chemother 36:502–504

    CAS  PubMed  Google Scholar 

  • Dunny GM, Brown BL, Clewell DB (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci USA 75:3479–3483

    CAS  PubMed  Google Scholar 

  • Dunny GM, Zimmerman DL, Tortorello ML (1985) Induction of surface exclusion (entry exclusion) by Streptococcus faecalis sex pheromones: use of monoclonal antibodies to identify an inducible surface antigen involved in the exclusion process. Proc Natl Acad Sci USA 82:8582–8586

    CAS  PubMed  Google Scholar 

  • Dupont H, Montravers P, Mohler J, Carbon C (1998) Disparate findings on the role of virulence factors of Enterococcus faecalis in mouse and rat models of peritonitis. Infect Immun 66:2570–2575

    CAS  PubMed  Google Scholar 

  • Dupre I, Zanetti S, Schito AM, Fadda G, Sechi LA (2003) Incidence of virulence determinants in clinical Enterococcus faecium and Enterococcus faecalis isolates collected in Sardinia (Italy). J Med Microbiol 52:491–498

    CAS  PubMed  Google Scholar 

  • Dussurget O, Cabanes D, Dehoux P, Lecuit M, Buchrieser C, Glaser P, Cossart P (2002) Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45:1095–1106

    CAS  PubMed  Google Scholar 

  • Duval-Iflah Y, Maisonneuve S, Ouriet M (1998) Effect of fermented milk intake on plasmid transfer and on the persistence of transconjugants in the digestive tract of gnotobiotic mice. Antonie van Leeuwenhoek 73:95–102

    CAS  PubMed  Google Scholar 

  • Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635

    CAS  PubMed  Google Scholar 

  • Elkins CA, Moser SA, Savage DC (2001) Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100–100 and other Lactobacillus species. Microbiology 147:3403–3412

    CAS  PubMed  Google Scholar 

  • Elsner HA, Sobottka I, Mack D, Claussen M, Laufs R, Wirth R (2000) Virulence factors of Enterococcus faecalis and Enterococcus faecium blood culture isolates. Eur J Clin Microbiol Infect Dis 19:39–42

    CAS  PubMed  Google Scholar 

  • Finlay BB, Falkow S (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136–169

    CAS  PubMed  Google Scholar 

  • Flannagan SE, Clewell DB (2002) Identification and characterization of genes encoding sex pheromone cAM373 activity in Enterococcus faecalis and Staphylococcus aureus. Mol Microbiol 44:803–817

    CAS  PubMed  Google Scholar 

  • Fluit AC, Schmitz FJ (1999) Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis 18:761–770

    CAS  PubMed  Google Scholar 

  • Forde A, Fitzgerald GF (1999) Bacteriophage defence systems in lactic acid bacteria. Antonie van Leeuwenhoek 76:89–113

    CAS  PubMed  Google Scholar 

  • Franz CMAP, Holzapfel WH (2004) The genus Enterococcus: biotechnological and safety issues. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic acid bacteria. Microbiological and functional aspects. Marcel Dekker, Inc., New York

    Google Scholar 

  • Girish KS, Kemparaju K (2007) The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 80:1921–1943

    CAS  PubMed  Google Scholar 

  • Godde JS, Bickerton A (2006) The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol 62:718–729

    CAS  PubMed  Google Scholar 

  • Grutter FH, Zimmerman LN (1955) A proteolytic enzyme of Streptococcus zymogenes. J Bacteriol 69:728–732

    CAS  PubMed  Google Scholar 

  • Gruzza M, Langella P, Duval-Iflah Y, Ducluzeau R (1993) Gene transfer from engineered Lactococcus lactis strains to Enterococcus faecalis in the digestive tract of gnotobiotic mice. Microb Releases 2:121–125

    CAS  PubMed  Google Scholar 

  • Gruzza M, Fons M, Ouriet MF, Duval-Iflah Y, Ducluzeau R (1994) Study of gene transfer in vitro and in the digestive tract of gnotobiotic mice from Lactococcus lactis strains to various strains belonging to human intestinal flora. Microb Releases 2:183–189

    CAS  PubMed  Google Scholar 

  • Guédon G, Bourgoin F, Decaris B (1998) Does gene horizontal transfer occur in lactic acid bacteria co-cultures? Lait 78:53–58

    Google Scholar 

  • Gueimonde M, Salminen S (2004) Methods of analyzing gut microbiota. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic acid bacteria. Microbiological and functional aspects. Marcel Dekker, Inc., New York

    Google Scholar 

  • Haas W, Shepard BD, Gilmore MS (2002) Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415:84–87

    CAS  PubMed  Google Scholar 

  • Hall AE, Gorovits EL, Syribeys PJ, Domanski PJ, Ames BR, Chang CY, Vernachio JH, Patti JM, Hutchins JT (2007) Monoclonal antibodies recognizing the Enterococcus faecalis collagen-binding MSCRAMM Ace: conditional expression and binding analysis. Microb Pathog 43:55–66

    CAS  PubMed  Google Scholar 

  • Harty DW, Oakey HJ, Patrikakis M, Hume EB, Knox KW (1994) Pathogenic potential of lactobacilli. Int J Food Microbiol 24:179–189

    CAS  PubMed  Google Scholar 

  • Hassett DJ, Cohen MS (1989) Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. FASEB Journal 3:2574–2582

    CAS  PubMed  Google Scholar 

  • Heikens E, Bonten MJ, Willems RJ (2007) Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J Bacteriol 189:8233–8240

    CAS  PubMed  Google Scholar 

  • Heikens E, Leendertse M, Wijnands LM, van Luit-Asbroek M, Bonten MJM, van der Poll T, Willems RJL (2009) Enterococcal surface protein Esp is not essential for cell adhesion and intestinal colonization of Enterococcus faecium in mice. BMC Microbiol: 9:19

    Google Scholar 

  • Hendrickx APA, Willems RJL, Bonten MJM, van Schaik W (2009) LPxTG surface proteins of enterococci. Trends Microbiol 17:423–430

    CAS  PubMed  Google Scholar 

  • Hirt H, Schlievert PM, Dunny GM (2002) In vivo induction of virulence and antibiotic resistance transfer in Enterococcus faecalis mediated by the sex pheromone-sensing system of pCF10. Infect Immun 70:716–723

    CAS  PubMed  Google Scholar 

  • Holzapfel WH, Haberer P, Snel J, Schillinger U, Huis in’t Veld JH (1998) Overview of gut flora and probiotics. Int J Food Microbiol 41:85–101

    CAS  PubMed  Google Scholar 

  • Horvath P, Coûté-Monvoisin A, Romero DA, Boyaval P, Fremaux C, Barrangou R (2009) Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol 131:62–70

    CAS  PubMed  Google Scholar 

  • Hubble TS, Hatton JF, Nallapareddy SR, Murray BE, Gillespie MJ (2003) Influence of Enterococcus faecalis proteases and the collagen-binding protein, Ace, on adhesion to dentin. Oral Microbiol Immunol 18:121–126

    CAS  PubMed  Google Scholar 

  • Huycke MM, Gilmore MS, Jett BD, Booth JL (1992) Transfer of pheromone-inducible plasmids between Enterococcus faecalis in the Syrian hamster gastrointestinal tract. J Infect Dis 166:1188–1191

    CAS  PubMed  Google Scholar 

  • Huycke MM, Joyce W, Wack MF (1996) Augmented production of extracellular superoxide by blood isolates of Enterococcus faecalis. J Infect Dis 173:743–746

    CAS  PubMed  Google Scholar 

  • Hynes WL, Walton SL (2000) Hyaluronidases of Gram-positive bacteria. FEMS Microbiol Lett 183:201–207

    CAS  PubMed  Google Scholar 

  • Igimi S, Ryu CH, Park SH, Sasaki Y, Sasaki T, Kumagai S (1996) Transfer of conjugative plasmid pAMβ1 from Lactococcus lactis to mouse intestinal bacteria. Lett Appl Microbiol 23:31–35

    CAS  PubMed  Google Scholar 

  • Ike Y, Hashimoto H, Clewell DB (1984) Hemolysin of Streptococcus faecalis subspecies zymogenes contributes to virulence in mice. Infect Immun 45:528–530

    CAS  PubMed  Google Scholar 

  • Isenmann R, Schwarz M, Rozdzinski E, Marre R, Beger HG (2000) Aggregation substance promotes colonic mucosal invasion of Enterococcus faecalis in an ex vivo model. J Surg Res 89:132–138

    CAS  PubMed  Google Scholar 

  • Jacobsen L, Wilcks A, Hammer K, Huys G, Gevers D, Andersen SR (2007) Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2–2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiol Ecol 59:158–166

    CAS  PubMed  Google Scholar 

  • Jett BD, Huycke MM, Gilmore MS (1994) Virulence of enterococci. Clin Microbiol Rev 7:462–478

    CAS  PubMed  Google Scholar 

  • Joyanes P, Pascual A, Martinez-Martinez L, Hevia A, Perea EJ (2000) In vitro adherence of Enterococcus faecalis and Enterococcus faecium to urinary catheters. Eur J Clin Microbiol Infect Dis 19:124–127

    CAS  PubMed  Google Scholar 

  • Kanemitsu K, Nishino T, Kunishima H, Okamura N, Takemura H, Yamamoto H, Kaku M (2001) Quantitative determination of gelatinase activity among enterococci. J Microbiol Meth 47:11–16

    CAS  Google Scholar 

  • Kankainen M, Paulin L, Tynkkynen S, Von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx APA, Lebeer S, De Keersmaecker SCJ, Vanderleyden J, Hämäläinen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT, Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjärvi T, Auvinen P, De Vos WM (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci USA 106:17193–17198

    CAS  PubMed  Google Scholar 

  • Kayaoglu G, Orstavik D (2004) Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med 15:308–320

    PubMed  Google Scholar 

  • King A, Bathgate T, Phillips I (2002) Erythromycin susceptibility of viridans streptococci from the normal throat flora of patients treated with azithromycin or clarithromycin. Clin Microbiol Infect 8:85–92

    CAS  PubMed  Google Scholar 

  • Launay A, Ballard SA, Johnson PDR, Grayson ML, Lambert T (2006) Transfer of vancomycin resistance transposon Tn1549 from Clostridium symbiosum to Enterococcus spp. in the gut of gnotobiotic mice. Antimicrob Agents Chemother 50:1054–1062

    CAS  PubMed  Google Scholar 

  • Lawrence JG (1999) Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol 2:519–523

    CAS  PubMed  Google Scholar 

  • Lawson RD, Coyle WJ (2010) The noncolonic microbiome: does it really matter? Curr Gastroenterol Rep 12:259–262

    PubMed  Google Scholar 

  • Le Marrec C, Hyronimus B, Bressollier P, Verneuil B, Urdaci MC (2000) Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4. Appl Environ Microbiol 66:5213–5220

    CAS  PubMed  Google Scholar 

  • Licht TR, Laugesen D, Jensen LB, Jacobsen BL (2002) Transfer of the pheromone-inducible plasmid pCF10 among Enterococcus faecalis microorganisms colonizing the intestine of mini-pigs. Appl Environ Microbiol 68:187–193

    CAS  PubMed  Google Scholar 

  • Lim S, Tanimoto K, Tomita H, Ike Y (2006) Pheromone-responsive conjugative vancomycin resistance plasmids in Enterococcus faecalis isolates from humans and chicken feces. Appl Environ Microbiol 72:6544–6553

    CAS  PubMed  Google Scholar 

  • Lopes MDFS, Simões AP, Tenreiro R, Marques JJF, Crespo MTB (2006) Activity and expression of a virulence factor, gelatinase, in dairy enterococci. Int J Food Microbiol 112:208–214

    CAS  Google Scholar 

  • Macovei L, Zurek L (2006) Ecology of antibiotic resistance genes: characterization of enterococci from houseflies collected in food settings. Appl Environ Microbiol 72:4028–4035

    CAS  PubMed  Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    CAS  PubMed  Google Scholar 

  • Maisonneuve S, Ouriet MF, Duval-Iflah Y (2001) Comparison of yoghurt, heat treated yoghurt, milk and lactose effects on plasmid dissemination in gnotobiotic mice. Antonie Van Leeuwenhoek 79:199–207

    CAS  PubMed  Google Scholar 

  • Majewski J, Zawadzki P, Pickerill P, Cohan FM, Dowson CG (2000) Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol 182:1016–1023

    CAS  PubMed  Google Scholar 

  • Makarova KS, Koonin EV (2007) Evolutionary genomics of lactic acid bacteria. J Bacteriol 189:1199–1208

    CAS  PubMed  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine M, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee J, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616

    PubMed  Google Scholar 

  • Makinen P, Clewell DB, An F, Makinen KK (1989) Purification and substrate specificity of a strongly hydrophobic extracellular metalloendopeptidase (‘gelatinase’) from Streptococcus faecalis (strain 0G1–10). J Biol Chem 264:3325–3334

    CAS  PubMed  Google Scholar 

  • Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16:189–199

    CAS  Google Scholar 

  • Mater DDG, Langella P, Corthier G, Flores MJ (2005) Evidence of vancomycin resistance gene transfer between enterococci of human origin in the gut of mice harbouring human microbiota. J Antimicrob Chemother 56:975–978

    CAS  PubMed  Google Scholar 

  • Mater DDG, Langella P, Corthier G, Flores MJ (2008) A probiotic Lactobacillus strain can acquire vancomycin resistance during digestive transit in mice. J Mol Microbiol Biotechnol 14:123–127

    CAS  PubMed  Google Scholar 

  • Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol 105:281–295

    CAS  PubMed  Google Scholar 

  • Mattila-Sandholm T, Mättö J, Saarela M (1999) Lactic acid bacteria with health claims—interactions and interference with gastrointestinal flora. Int Dairy J 9:25–35

    Google Scholar 

  • McAuliffe O, Cano RJ, Klaenhammer TR (2005) Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71:4925–4929

    CAS  PubMed  Google Scholar 

  • Miller KW, Ray P, Steinmetz T, Hanekarnp T, Ray B (2005) Gene organization and sequences of pediocin AcH/PA-1 production operons in Pediococcus and Lactobacillus plasmids. Lett Appl Microbiol 40:56–62

    CAS  PubMed  Google Scholar 

  • Mojica FJM, Díez-Villaseñor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36:244–246

    CAS  PubMed  Google Scholar 

  • Mora D, Fortina MG, Parini C, Manachini PL (2000) PCR-mediated site-directed mutagenesis on pedB gene and HaeIII restriction as a rapid tool for discrimination among pediocin AcH/PA-1 producer strains. Food Microbiol 17:415–420

    CAS  Google Scholar 

  • Morelli L, Sarra PG, Bottazzi V (1988) In vivo transfer of pAMβ1 from Lactobacillus reuteri to Enterococcus faecalis. J Appl Bacteriol 65:371–375

    CAS  PubMed  Google Scholar 

  • Morelli L, Vogensen FK, von Wright A (2004) Genetics of lactic acid bacteria. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic acid bacteria. Microbiological and functional aspects. Marcel Dekker, Inc., New York

    Google Scholar 

  • Moubareck C, Bourgeois N, Courvalin P, Doucet-Populaire F (2003) Multiple antibiotic resistance gene transfer from animal to human enterococci in the digestive tract of gnotobiotic mice. Antimicrob Agents Chemother 47:2993–2996

    CAS  PubMed  Google Scholar 

  • Mundy LM, Sahm DF, Gilmore M (2000) Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 13:513–522

    CAS  PubMed  Google Scholar 

  • Murray BE (1990) The life and times of the Enterococcus. Clin Microbiol Rev 3:46–65

    CAS  PubMed  Google Scholar 

  • Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229

    CAS  PubMed  Google Scholar 

  • Nicolas P, Bessières P, Ehrlich SD, Maguin E, van de Guchte M (2007) Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract. BMC Evol Biol 7:141–154

    PubMed  Google Scholar 

  • Nicoloff H, Bringel F (2003) ISLpl1 Is a Functional IS30-Related Insertion Element in Lactobacillus plantarum that Is Also Found in Other Lactic Acid Bacteria. Appl Environ Microbiol 69:6032–6040

    CAS  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    CAS  PubMed  Google Scholar 

  • Pecharki D, Petersen FC, Scheie AA (2008) Role of hyaluronidase in Streptococcus intermedius biofilm. Microbiology 154:932–938

    CAS  PubMed  Google Scholar 

  • Pfeiler EA, Klaenhammer TR (2007) The genomics of lactic acid bacteria. Trends Microbiol 15:546–553

    CAS  PubMed  Google Scholar 

  • Qin X, Singh KV, Weinstock GM, Murray BE (2001) Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J Bacteriol 183:3372–3382

    CAS  PubMed  Google Scholar 

  • Rice LB, Carias L, Rudin S, Vael C, Goossens H, Konstabel C, Klare I, Nallapareddy SR, Huang W, Murray BE (2003) A potential virulence gene, hyl Efm, predominates in Enterococcus faecium of clinical origin. J Infect Dis 187:508–512

    CAS  PubMed  Google Scholar 

  • Salminen S, Playne M, Lee YK (2004) Successful probiotic lactobacilli: Human studies on probiotic efficacy. In: Shortt C, O’Brien J (eds) Handbook of functional dairy products. CRC Press, New York

    Google Scholar 

  • Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416

    CAS  PubMed  Google Scholar 

  • Schmidt H, Hensel M (2004) Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17:14–56

    CAS  PubMed  Google Scholar 

  • Scott KP (2002) The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract. Cell Mol Life Sci 59:2071–2082

    CAS  PubMed  Google Scholar 

  • Shah NP (2007) Functional cultures and health benefits. Int Dairy J 17:1262–1277

    Google Scholar 

  • Shankar V, Baghdayan AS, Huycke MM, Lindahl G, Gilmore MS (1999) Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun 67:193–200

    CAS  PubMed  Google Scholar 

  • Shankar N, Coburn P, Pilla C, Haas W, Gilmore M (2004) Enterococcal cytolysin: activities and association with other virulence traits in a pathogenicity island. Int J Med Microbiol 293:609–618

    CAS  PubMed  Google Scholar 

  • Shugart LR, Beck RW (1964) Purification and activity of proteinase of Streptococcus faecalis Var. liquefaciens. J Bacteriol 88:586–590

    CAS  PubMed  Google Scholar 

  • Siezen RJ, Renckens B, Van Swam I, Peters S, Van Kranenburg R, Kleerebezem M, De Vos WM (2005) Complete sequences of four plasmids of Lactococcus lactis subsp. cremoris SK11 reveal extensive adaptation to the dairy environment. Appl Environ Microbiol 71:8371–8382

    CAS  PubMed  Google Scholar 

  • Sillanpää J, Nallapareddy SR, Prakash VP, Qin X, Höök M, Weinstock GM, Murray BE (2008) Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium. Microbiology 154:3199–3211

    PubMed  Google Scholar 

  • Sillanpää J, Nallapareddy SR, Houston J, Ganesh VK, Bourgkogne A, Singh KV, Murray BE, Höök M (2009a) A family of fibrinogen-binding MSCRAMMs from Enterococcus faecalis. Microbiology 155:2390–2400

    PubMed  Google Scholar 

  • Sillanpää J, Prakash VP, Nallapareddy SR, Murray BE (2009b) Distribution of genes encoding MSCRAMMs and pili in clinical and natural populations of Enterococcus faecium. J Clin Microbiol 47:896–901

    PubMed  Google Scholar 

  • Slover CM (2008) Lactobacillus: a Review. Clin Microbiol Newsl 30:23–27

    Google Scholar 

  • Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EM (2007) Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318:1449–1452

    CAS  PubMed  Google Scholar 

  • Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3:700–710

    PubMed  Google Scholar 

  • Starr CR, Engleberg NC (2006) Role of hyaluronidase in subcutaneous spread and growth of group A streptococcus. Infect Immun 74:40–48

    CAS  PubMed  Google Scholar 

  • Su YA, Sulavik MC, He P, Makinen KK, Makinen PL, Fiedler S, Wirth R, Clewell DB (1991) Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. liquefaciens. Infect Immun 59:415–420

    CAS  PubMed  Google Scholar 

  • Tamime A (2005) Probiotic dairy products. Blackwell, Oxford

    Google Scholar 

  • Tanaka H, Hashiba H, Kok J, Mierau I (2000) Bile salt hydrolase of Bifidobacterium longum - Biochemical and genetic characterization. Appl Environ Microbiol 66:2502–2512

    CAS  PubMed  Google Scholar 

  • Teng F, Kawalec M, Weinstock GM, Hryniewicz W, Murray BE (2003) An Enterococcus faecium secreted antigen, SagA, exhibits broad-spectrum binding to extracellular matrix proteins and appears essential for E. faecium growth. Infect Immun 71:5033–5041

    CAS  PubMed  Google Scholar 

  • Teuber M, Meile L, Schwarz F (1999) Acquired antibiotic resistance in lactic acid bacteria from food. Antonie van Leeuwenhoek 76:115–137

    CAS  PubMed  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

    CAS  PubMed  Google Scholar 

  • Tian Y, He X, Torralba M, Yooseph S, Nelson KE, Lux R, McLean JS, Yu G, Shi W (2010) Using DGGE profiling to develop a novel culture medium suitable for oral microbial communities. Mol Oral Microbiol 25:357–367

    CAS  PubMed  Google Scholar 

  • Todorov SD, Dicks LMT (2009) Bacteriocin production by Pediococcus pentosaceus isolated from marula (Scerocarya birrea). Int J Food Microbiol 132:117–126

    CAS  PubMed  Google Scholar 

  • Tønjum T, Håvarstein LS, Koomey M, Seeberg E (2004) Transformation and DNA repair: linkage by DNA recombination. Trends Microbiol 12:1–4

    PubMed  Google Scholar 

  • Tortorello ML, Dunny GM (1985) Identification of multiple cell surface antigens associated with the sex pheromone response of Streptococcus faecalis. J Bacteriol 162:131–137

    CAS  PubMed  Google Scholar 

  • Tortorello M, Adsit J, Krug D (1986) Monoclonal antibodies to cell surface antigens involved in sex pheromone induced mating in Streptococcus faecalis. J Gen Microbiol 132:857–864

    CAS  PubMed  Google Scholar 

  • Van Reenen CA, Chikindas ML, Van Zyl WH, Dicks LMT (2003) Characterization and heterologous expression of a class IIa bacteriocin, plantaricin 423 from Lactobacillus plantarum 423, in Saccharomyces cerevisiae. Int J Food Microbiol 81:29–40

    PubMed  Google Scholar 

  • Vankerckhoven V, Huys G, Vancanneyt M, Vael C, Klare I, Romond M, Entenza JM, Moreillon P, Wind RD, Knol J, Wiertz E, Pot B, Vaughan EE, Kahlmeter G, Goossens H (2008) Biosafety assessment of probiotics used for human consumption: recommendations from the EU-PROSAFE project. Trends Food Sci Technol 19:102–114

    CAS  Google Scholar 

  • Vesterlund S, Vankerckhoven V, Saxelin M, Goossens H, Salminen S, Ouwehand AC (2007) Safety assessment of Lactobacillus strains: presence of putative risk factors in faecal, blood and probiotic isolates. Int J Food Microbiol 116:325–331

    CAS  PubMed  Google Scholar 

  • Yasmin A, Kenny JG, Shankar J, Darby AC, Hall N, Edwards C, Horsburgh MJ (2010) Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages. J Bacteriol 192:1122–1130

    CAS  PubMed  Google Scholar 

  • Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE, Krajmalnik-Brown R (2009) Human gut microbiota in obesity and after gastric bypass. PNAS 106:2365–2370

    CAS  PubMed  Google Scholar 

  • Zhou JS, Pillidge CJ, Gopal PK, Gill HS (2005) Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int J Food Microbiol 98:211–217

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon M. T. Dicks.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Reenen, C.A., Dicks, L.M.T. Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? A review. Arch Microbiol 193, 157–168 (2011). https://doi.org/10.1007/s00203-010-0668-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0668-3

Keywords

Navigation