Skip to main content

Advertisement

Log in

Analysis of the Impact of Rosuvastatin on Bacterial Mevalonate Production Using a UPLC-Mass Spectrometry Approach

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Statins are widely prescribed cholesterol-lowering medications and act through inhibition of the human enzyme 3-methylglutaryl coenzyme A reductase (HMG-R) which produces mevalonate (MVAL), a key substrate for cholesterol biosynthesis. Some important microbial species also express an isoform of HMG-R; however, the nature of the interaction between statins and bacteria is currently unclear and studies would benefit from protocols to quantify MVAL in complex microbial environments. The objective of this study was to develop a protocol for the analytical quantification of MVAL in bacterial systems and to utilise this approach to analyse the effects of Rosuvastatin (RSV) on bacterial MVAL formation. To determine the effective concentration range of RSV, we examined the dose-dependent inhibition of growth in the HMG-R+ bacterial pathogens Listeria monocytogenes, Staphylococcus aureus and Enterococcus faecium at various concentrations of pure RSV. Growth inhibition generally correlated with a reduction in bacterial MVAL levels, particularly in culture supernatants at high RSV concentrations, as determined using our ultra-performance liquid chromatography mass spectrometry protocol. This work therefore outlines a refined protocol for the analysis of MVAL in microbial cultures and provides evidence for statin-mediated inhibition of bacterial HMG-R. Furthermore, we show that MVAL is readily transported and secreted from bacterial cells into the growth media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bergman P, Linde C, Putsep K, Pohanka A, Normark S, Henriques-Normark B, Andersson J, Bjorkhem-Bergman L (2011) Studies on the antibacterial effects of statins–in vitro and in vivo. PLoS One 6(8):e24394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Das R, Pal TK (2014) Validation of liquid chromatography-tandem mass spectrometry for mevalonate in human plasma: incompetent effects between treated atorvastatin & its combination with olmesartan in cardiovascular patients. J Young Pharm 6(2):50–57

    Article  Google Scholar 

  3. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27(8):753–759

    Article  CAS  PubMed  Google Scholar 

  4. Emani S, Gunjiganur GV, Mehta DS (2014) Determination of the antibacterial activity of simvastatin against periodontal pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: an in vitro study. Contemp Clin Dent 5(3):377–382

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hennessy E, Mooij MJ, Legendre C, Reen FJ, O’Callaghan J, Adams C, O’Gara F (2013) Statins inhibit in vitro virulence phenotypes of Pseudomonas aeruginosa. J Antibiot 66(2):99–101

    Article  CAS  PubMed  Google Scholar 

  6. Hennessy E, O’Callaghan J, Mooij MJ, Legendre C, Camacho-Vanegas O, Camacho SC, Adams C, Martignetti JA, O’Gara F (2014) The impact of simvastatin on pulmonary effectors of Pseudomonas aeruginosa infection. PLoS One 9(7):e102200

    Article  PubMed  PubMed Central  Google Scholar 

  7. Heuston S, Begley M, Davey MS, Eberl M, Casey PG, Hill C, Gahan CG (2012) HmgR, a key enzyme in the mevalonate pathway for isoprenoid biosynthesis, is essential for growth of Listeria monocytogenes EGDe. Microbiology 158(Pt 7):1684–1693

    Article  CAS  PubMed  Google Scholar 

  8. Heuston S, Begley M, Gahan CG, Hill C (2012) Isoprenoid biosynthesis in bacterial pathogens. Microbiology 158(Pt 6):1389–1401

    Article  CAS  PubMed  Google Scholar 

  9. Istvan ES (2002) Structural mechanism for statin inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Am Heart J 144(6 Suppl):S27–S32

    Article  CAS  PubMed  Google Scholar 

  10. Jerwood S, Cohen J (2008) Unexpected antimicrobial effect of statins. J Antimicrob Chemother 61(2):362–364

    Article  CAS  PubMed  Google Scholar 

  11. Johansen ME, Green LA, Sen A, Kircher S, Richardson CR (2014) Cardiovascular risk and statin use in the United States. Ann Fam Med 12(3):215–223

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97(24):13172–13177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28(1):87–99

    Article  CAS  PubMed  Google Scholar 

  14. Masadeh M, Mhaidat N, Alzoubi K, Al-Azzam S, Alnasser Z (2012) Antibacterial activity of statins: a comparative study of atorvastatin, simvastatin, and rosuvastatin. Ann Clin Microbiol Antimicrob 11:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsuoka T, Ueda S, Matsumoto H, Kawakami M (2012) An ultrasensitive enzymatic method for measuring mevalonic acid in serum. J Lipid Res 53(9):1987–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Motzkus-Feagans CA, Pakyz A, Polk R, Gambassi G, Lapane KL (2012) Statin use and the risk of Clostridium difficile in academic medical centres. Gut 61(11):1538–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Park SW, Choi AR, Lee HJ, Chung H, Park JC, Shin SK, Lee SK, Lee YC, Kim JE, Lee H (2013) The effects of statins on the clinical outcomes of Clostridium difficile infection in hospitalised patients. Aliment Pharmacol Ther 38(6):619–627

    Article  CAS  PubMed  Google Scholar 

  18. Tabernero L, Rodwell VW, Stauffacher CV (2003) Crystal structure of a statin bound to a class II hydroxymethylglutaryl-CoA reductase. J Biol Chem 278(22):19933–19938

    Article  CAS  PubMed  Google Scholar 

  19. Tauch A, Bischoff N, Puhler A, Kalinowski J (2004) Comparative genomics identified two conserved DNA modules in a corynebacterial plasmid family present in clinical isolates of the opportunistic human pathogen Corynebacterium jeikeium. Plasmid 52(2):102–118

    Article  CAS  PubMed  Google Scholar 

  20. Waldron J, Webster C (2011) Liquid chromatography-tandem mass spectrometry method for the measurement of serum mevalonic acid: a novel marker of hydroxymethylglutaryl coenzyme A reductase inhibition by statins. Ann Clin Biochem 48(Pt 3):223–232

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J.A.N. was funded by an EMBARK postgraduate research scholarship from the Irish Research Council for Science Engineering and Technology (IRCSET). The mass spectrometry instrument and analysis was funded under the Higher Education Authority Programme for Research in Third Level Institutions (PRTLI), cycle 4 and co-funded under the European Regional Development Fund. This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2273.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Joyce or C. G. M. Gahan.

Ethics declarations

Conflict of Interest

No conflict of interest declared.

Electronic supplementary material

Below is the link to the electronic supplementary material.

284_2016_1014_MOESM1_ESM.docx

Figure S1. UPLC-MS standard curve of MVAL. Figure S2. Elution of MVAL at 2.1 mins at 12.5 ng/ml giving a limit of detection (LOD) of 3.125 ng/ml. Figure S3. CLUSTAL (MUSCLE) alignment of C. kroppenstedtii (Class I HMG-R) against S. aureus (Class II HMG-R) revealed low sequence identity (20.06%) and regions of dissimilarity. Supplementary material 1 (DOCX 468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nolan, J.A., Kinsella, M., Hill, C. et al. Analysis of the Impact of Rosuvastatin on Bacterial Mevalonate Production Using a UPLC-Mass Spectrometry Approach. Curr Microbiol 73, 1–8 (2016). https://doi.org/10.1007/s00284-016-1014-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1014-z

Keywords

Navigation