Skip to main content
Log in

Recent applications of mass spectrometry in bacterial lipidomics

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The popularity of mass spectrometry–based lipidomics has soared in the past decade. While the majority of the lipidomics work is being performed in mammalian and other eukaryotic systems, there is also a growing rise in the exploration of bacterial lipidomics. The lipids found in bacteria can be substantially different from those in eukaryotic systems, but they are equally important for maintaining the structure of the bacteria and providing protection from the surrounding environment. In this article, recent applications of lipidomics in combination with molecular biology and applications in microbial strain identification and antibiotic susceptibility are highlighted. The authors’ perspectives on current challenges facing the field and future directions are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Watson AD. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006;47(10):2101–11.

    CAS  PubMed  Google Scholar 

  2. Ivanova PT, Milne SB, Myers DS, Brown HA. Lipidomics: a mass spectrometry based systems level analysis of cellular lipids. Curr Opin Chem Biol. 2009;13(5–6):526–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Shevchenko A, Simons K. Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol. 2010;11(8):593–8.

    CAS  PubMed  Google Scholar 

  4. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, et al. A comprehensive classification system for lipids. J Lipid Res. 2005;46(5):839–61.

    CAS  PubMed  Google Scholar 

  5. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH, Shimizu T, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009;50:S9–S14.

    PubMed  PubMed Central  Google Scholar 

  6. Han X, Gross RW. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev. 2005;24(3):367–412.

    CAS  PubMed  Google Scholar 

  7. Wang M, Wang CY, Han RH, Han XL. Novel advances in shotgun lipidomics for biology and medicine. Prog Lipid Res. 2016;61:83–108.

    CAS  PubMed  Google Scholar 

  8. Hu CF, Duan Q, Han XL. Strategies to improve/eliminate the limitations in shotgun lipidomics. Proteomics. 2019;1900070. https://doi.org/10.1002/pmic.201900070

  9. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51(11):3299–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cajka T, Fiehn O. LC-MS-based lipidomics and automated identification of lipids using the LipidBlast in-silico MS/MS library. Methods Mol Biol. 1609;2017:149–70.

    Google Scholar 

  11. Koelmel JP, Kroeger NM, Gill EL, Ulmer CZ, Bowden JA, Patterson RE, et al. Expanding lipidome coverage using LC-MS/MS data-dependent acquisition with automated exclusion list generation. J Am Soc Mass Spectrom. 2017;28(5):908–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Blazenovic I, Shen T, Mehta SS, Kind T, Ji J, Piparo M, et al. Increasing compound identification rates in untargeted lipidomics research with liquid chromatography drift time-ion mobility mass spectrometry. Anal Chem. 2018;90(18):10758–64.

    CAS  PubMed  Google Scholar 

  13. Hines KM, Herron J, Xu LB. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. J Lipid Res. 2017;58(4):809–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng X, Smith RD, Baker ES. Recent advances in lipid separations and structural elucidation using mass spectrometry combined with ion mobility spectrometry, ion-molecule reactions and fragmentation approaches. Curr Opin Chem Biol. 2017;42:111–8.

    PubMed  PubMed Central  Google Scholar 

  15. Kanfer J, Kennedy EP. Metabolism and function of bacterial lipids. I. Metabolism of phospholipids in Escherichia coli B. J Biol Chem. 1963;238:2919–22.

    CAS  PubMed  Google Scholar 

  16. Kanfer J, Kennedy EP. Metabolism and function of bacterial lipids. II. Biosynthesis of phospholipids in Escherichia coli. J Biol Chem. 1964;239:1720–6.

    CAS  PubMed  Google Scholar 

  17. Hirschberg CB, Kennedy EP. Mechanism of the enzymatic synthesis of cardiolipin in Escherichia coli. Proc Natl Acad Sci U S A. 1972;69(3):648–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kanfer JN, Kennedy EP. Synthesis of phosphatidylserine by Escherichia coli. J Biol Chem. 1962;237:PC270–1.

    CAS  PubMed  Google Scholar 

  19. Zhang YM, Rock CO. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol. 2008;6(3):222–33.

    PubMed  Google Scholar 

  20. Qiu XY, Choudhry AE, Janson CA, Grooms M, Daines RA, Lonsdale JT, et al. Crystal structure and substrate specificity of the beta-ketoacyl-acyl carrier protein synthase III (FabH) from Staphylococcus aureus. Protein Sci. 2005;14(8):2087–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Grogan DW, Cronan JE Jr. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev. 1997;61(4):429–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang YY, Cronan JE. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol. 1999;33(2):249–59.

    CAS  PubMed  Google Scholar 

  23. Legendre S, Letellier L, Shechter E. Influence of lipids with branched-chain fatty acids on the physical, morphological and functional properties of Escherichia coli cytoplasmic membrane. Biochim Biophys Acta. 1980;602(3):491–505.

    CAS  PubMed  Google Scholar 

  24. Poger D, Mark AE. A ring to rule them all: the effect of cyclopropane fatty acids on the fluidity of lipid bilayers. J Phys Chem B. 2015;119(17):5487–95.

    CAS  PubMed  Google Scholar 

  25. Percy MG, Grundling A. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu Rev Microbiol. 2014;68:81–100.

    CAS  PubMed  Google Scholar 

  26. de Kruijff B, van Dam V, Breukink E. Lipid II: a central component in bacterial cell wall synthesis and a target for antibiotics. Prostaglandins Leukot Essent Fat Acids. 2008;79(3–5):117–21.

    Google Scholar 

  27. Erridge C, Bennett-Guerrero E, Poxton IR. Structure and function of lipopolysaccharides. Microbes Infect. 2002;4(8):837–51.

    CAS  PubMed  Google Scholar 

  28. Garrett TA. Major roles for minor bacterial lipids identified by mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(11):1319–24.

    CAS  PubMed  Google Scholar 

  29. Administration USFaD. FDA authorizes new use of test, first to identify the emerging pathogen Candida auris: United States Food and Drug Administration; 2018 [Available from: https://www.fda.gov/news-events/press-announcements/fda-authorizes-new-use-test-first-identify-emerging-pathogen-candida-auris].

  30. Levesque S, Dufresne PJ, Soualhine H, Domingo MC, Bekal S, Lefebvre B, et al. A side by side comparison of Bruker Biotyper and VITEK MS: utility of MALDI-TOF MS technology for microorganism identification in a public health reference laboratory. PLoS One. 2015;10(12):e0144878.

    PubMed  PubMed Central  Google Scholar 

  31. Pence MA, McElvania TeKippe E, Wallace MA, Burnham CA. Comparison and optimization of two MALDI-TOF MS platforms for the identification of medically relevant yeast species. Eur J Clin Microbiol Infect Dis. 2014;33(10):1703–12.

    CAS  PubMed  Google Scholar 

  32. Elssner T, Kostrzewa M, Maier T, Kruppa G. Microorganism identification based on MALDI-TOF-MS fingerprints. In: Banoub J, editor. Detection of biological agents for the prevention of bioterrorism. NATO Science for Peace and Security Series A: Chemistry and Biology. Dordrecht: Springer; 2011. p. 99.

    Google Scholar 

  33. Cox CR, Jensen KR, Saichek NR, Voorhees KJ. Strain-level bacterial identification by CeO2-catalyzed MALDI-TOF MS fatty acid analysis and comparison to commercial protein-based methods. Sci Rep-Uk. 2015;5.

  34. Leung LM, Fondrie WE, Doi Y, Johnson JK, Strickland DK, Ernst RK, et al. Identification of the ESKAPE pathogens by mass spectrometric analysis of microbial membrane glycolipids. Sci Rep. 2017;7(1):6403.

    PubMed  PubMed Central  Google Scholar 

  35. Ryu SY, Wendt GA, Chandler CE, Ernst RK, Goodlett DR. Model-based spectral library approach for bacterial identification via membrane glycolipids. Anal Chem. 2019;91(17):11482–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Liang T, Leung LM, Opene B, Fondrie WE, Lee YI, Chandler CE, et al. Rapid microbial identification and antibiotic resistance detection by mass spectrometric analysis of membrane lipids. Anal Chem. 2019;91(2):1286–94.

    CAS  PubMed  Google Scholar 

  37. Cody RB, McAlpin CR, Cox CR, Jensen KR, Voorhees KJ. Identification of bacteria by fatty acid profiling with direct analysis in real time mass spectrometry. Rapid Commun Mass Spectrom. 2015;29(21):2007–12.

    CAS  PubMed  Google Scholar 

  38. Saichek NR, Cox CR, Kim S, Harrington PB, Stambach NR, Voorhees KJ. Strain-level Staphylococcus differentiation by CeO2-metal oxide laser ionization mass spectrometry fatty acid profiling. BMC Microbiol. 2016;16:72.

    PubMed  PubMed Central  Google Scholar 

  39. Hines KM, Waalkes A, Penewit K, Holmes EA, Salipante SJ, Werth BJ, Xu L. Characterization of the mechanisms of daptomycin resistance among gram-positive bacterial pathogens by multidimensional lipidomics. mSphere 2017;2(6):e00492–e00417.

  40. Adams HM, Joyce LR, Guan Z, Akins RL, Palmer KL. Streptococcus mitis and S. oralis lack a requirement for CdsA, the enzyme required for synthesis of major membrane phospholipids in bacteria. Antimicrob Agents Chemother. 2017;61(5):e02552–16.

    PubMed  PubMed Central  Google Scholar 

  41. Xie Z, Gonzalez LE, Ferreira CR, Vorsilak A, Frabutt D, Sobreira TJP, et al. Multiple reaction monitoring profiling (MRM-profiling) of lipids to distinguish strain-level differences in microbial resistance in Escherichia coli. Anal Chem. 2019;91(17):11349–54.

    CAS  PubMed  Google Scholar 

  42. Hines KM, Shen T, Ashford NK, Waalkes A, Penewit K, Holmes EA, et al. Occurrence of cross-resistance and beta-lactam seesaw effect in glycopeptide, lipopeptide, and lipoglycopeptide-resistant MRSA correlates with membrane phosphatidylglycerol levels. J Antimicrob Chemother. 2020:dkz562.

  43. Lasch P, Wahab T, Weil S, Palyi B, Tomaso H, Zange S, et al. Identification of highly pathogenic microorganisms by matrix-assisted laser desorption ionization-time of flight mass spectrometry: results of an interlaboratory ring trial. J Clin Microbiol. 2015;53(8):2632–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. El Hamidi A, Tirsoaga A, Novikov A, Hussein A, Caroff M. Microextraction of bacterial lipid A: easy and rapid method for mass spectrometric characterization. J Lipid Res. 2005;46(8):1773–8.

    PubMed  Google Scholar 

  45. Yehia HM, Hassanein WA, Ibraheim SM. Studies on molecular characterizations of the outer membrane proteins, lipids profile, and exopolysaccharides of antibiotic resistant strain Pseudomonas aeruginosa. Biomed Res Int. 2015.

  46. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8.

    PubMed  Google Scholar 

  47. Liu YY, Chandler CE, Leung LM, McElheny CL, Mettus RT, Shanks RMQ, et al. Structural modification of lipopolysaccharide conferred by mcr-1 in gram-negative ESKAPE pathogens. Antimicrob Agent Chemother. 2017;61(6):e00580–17.

    Google Scholar 

  48. Schenk ER, Nau F, Thompson CJ, Tse-Dinh YC, Fernandez-Lima F. Changes in lipid distribution in E. coli strains in response to norfloxacin. J Mass Spectrom. 2015;50(1):88–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dowhan W. A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochim Biophys Acta Mol Cell Biol Lipids. 2013;1831(3):471–94.

    CAS  Google Scholar 

  50. Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev. 2016;40(1):133–59.

    CAS  PubMed  Google Scholar 

  51. Lahiri N, Shah RR, Layre E, Young D, Ford C, Murray MB, et al. Rifampin resistance mutations are associated with broad chemical remodeling of mycobacterium tuberculosis. J Biol Chem. 2016;291(27):14248–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Layre E, Sweet L, Hong S, Madigan CA, Desjardins D, Young DC, et al. A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. Chem Biol. 2011;18(12):1537–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tan BK, Bogdanov M, Zhao J, Dowhan W, Raetz CR, Guan Z. Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc Natl Acad Sci U S A. 2012;109(41):16504–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Li C, Tan BK, Zhao J, Guan Z. In vivo and in vitro synthesis of phosphatidylglycerol by an Escherichia coli cardiolipin synthase. J Biol Chem. 2016;291(48):25144–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hines KM, Xu L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chem Phys Lipids. 2019;219:15–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mishra NN, Tran TT, Seepersaud R, Garcia-de-la-Maria C, Faull K, Yoon A, et al. Perturbations of phosphatidate cytidylyltransferase (CdsA) mediate daptomycin resistance in Streptococcus mitis by a novel mechanism. Antimicrob Agents Chemother. 2017;61(4):e02435–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Blevins MS, Klein DR, Brodbelt JS. Localization of cyclopropane modifications in bacterial lipids via 213 nm ultraviolet photodissociation mass spectrometry. Anal Chem. 2019;91(10):6820–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Stinson CA, Xia Y. A method of coupling the Paterno-Buchi reaction with direct infusion ESI-MS/MS for locating the C=C bond in glycerophospholipids. Analyst. 2016;141(12):3696–704.

    CAS  PubMed  Google Scholar 

  59. Poad BLJ, Green MR, Kirk JM, Tomczyk N, Mitchell TW, Blanksby SJ. High-pressure ozone-induced dissociation for lipid structure elucidation on fast chromatographic timescales. Anal Chem. 2017;89(7):4223–9.

    CAS  PubMed  Google Scholar 

  60. Kyle JE, Zhang X, Weitz KK, Monroe ME, Ibrahim YM, Moore RJ, et al. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst. 2016;141(5):1649–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Harris RA, May JC, Stinson CA, Xia Y, McLean JA. Determining double bond position in lipids using online ozonolysis coupled to liquid chromatography and ion mobility-mass spectrometry. Anal Chem. 2018;90(3):1915–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Poad BLJ, Zheng X, Mitchell TW, Smith RD, Baker ES, Blanksby SJ. Online ozonolysis combined with ion mobility-mass spectrometry provides a new platform for lipid isomer analyses. Anal Chem. 2018;90(2):1292–300.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by start-up funds from the University of Georgia Office of Research, the Franklin College of Arts and Sciences, and the Department of Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly M. Hines.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appala, K., Bimpeh, K., Freeman, C. et al. Recent applications of mass spectrometry in bacterial lipidomics. Anal Bioanal Chem 412, 5935–5943 (2020). https://doi.org/10.1007/s00216-020-02541-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02541-8

Keywords

Navigation