Skip to main content

Advertisement

Log in

Marine Oil-Degrading Microorganisms and Biodegradation Process of Petroleum Hydrocarbon in Marine Environments: A Review

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Due to the toxicity of petroleum compounds, the increasing accidents of marine oil spills/leakages have had a significant impact on our environment. Recently, different remedial techniques for the treatment of marine petroleum pollution have been proposed, such as bioremediation, controlled burning, skimming, and solidifying. (Hedlund and Staley in Int J Syst Evol Microbiol 51:61–66, 2001). This review introduces an important remedial method for marine oil pollution treatment—bioremediation technique—which is considered as a reliable, efficient, cost-effective, and eco-friendly method. First, the necessity of bioremediation for marine oil pollution was discussed. Second, this paper discussed the species of oil-degrading microorganisms, degradation pathways and mechanisms, the degradation rate and reaction model, and the factors affecting the degradation. Last, several suggestions for the further research in the field of marine oil spill bioremediation were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14

    Article  CAS  Google Scholar 

  2. Al-Mailem DM, Sorkhoh NA, Marafie M et al (2010) Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology. Bioresour Technol 101:5786–5792

    Article  CAS  PubMed  Google Scholar 

  3. Anderson CM, LaBelle RP (2000) Update of comparative occurrence rates for offshore oil spills. Spill Sci Technol Bull 6:303–321

    Article  Google Scholar 

  4. Atlas RM (1975) Effects of temperature and crude oil composition on petroleum biodegradation. J Appl Microbiol 30:396–403

    CAS  Google Scholar 

  5. Atlas RM (1985) Effects of hydrocarbons on microorganisms and biodegradation in Arctic ecosystems. Elsevier, London

    Google Scholar 

  6. Atlas RM (1995) Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull 31:178–182

    Article  CAS  Google Scholar 

  7. Atlas R, Bragg J (2009) Bioremediation of marine oil spills: when and when not—The Exxon Valdez experience. Microb Biotechnol 2:213–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Bachmann RT, Johnson AC, Edyvean RG (2014) Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegradation 86:225–237

    Article  CAS  Google Scholar 

  9. Bartha R, Atlas RM (1977) The microbiology of aquatic oil spills. Adv Appl Microbiol 22:225–266

    Article  CAS  PubMed  Google Scholar 

  10. Bao MT, Wang LN, Sun PY et al (2012) Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment. Mar Pollut Bull 64:1177–1185

    Article  CAS  PubMed  Google Scholar 

  11. Brakstad OG, Daling PS, Liv-G Faksness et al (2014) Depletion and biodegradation of hydrocarbons in dispersions and emulsions of the Macondo 252 oil generated in an oil-on-seawater mesocosm flume basin. Mar Pollut Bull 84:125–134

    Article  CAS  PubMed  Google Scholar 

  12. Boguslawska-Ws E, Dbrowski W (2001) The seasonal variability of yeasts and yeast-like organisms in water and bottom sediment of the Szczecin Lagoon. Int J Hyg Environ Health 203:451–458

  13. Blumer M, Ehrhardt M, Jones JH (1973) The environmental fate of stranded crude oil. Deep-Sea Research and Oceanographic Abstracts 20:239–259

    Article  CAS  Google Scholar 

  14. Bagi A, Pampanin DM, Lanzén A et al (2014) Naphthalene biodegradation in temperate and arctic marine microcosms. Biodegradation 25:111–125

    Article  CAS  PubMed  Google Scholar 

  15. Chaîneau CH, Rougeux G, Yéprémian C et al (2005) Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol Biochem 37:1490–1497

    Article  Google Scholar 

  16. Chaillan F, Chaîneau CH, Point V et al (2006) Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environ Pollut 144:255–265

    Article  CAS  PubMed  Google Scholar 

  17. Chelsea S, William TS, Terry CH et al (2013) Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters. Environ Pollut 173:224–230

    Article  Google Scholar 

  18. Choi SC, Kwon KK, Sohn JH, Kim SJ (2002) Evaluation of fertilizer additions to stimulate oil biodegradation in sand seashore mesocosms. J Microbiol Biotechnol 12:431–436

    Google Scholar 

  19. Colwell RR, Walker JD, Cooney JJ (1977) Ecological aspects of microbial degradation of petroleum in the marine environment. Crit Rev Microbiol 5:423–445

    Article  CAS  Google Scholar 

  20. Das N, Chandran P (2011) microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 13:1–13

    Google Scholar 

  21. Díez S, Jover E, Bayona JM et al (2007) Prestige oil spill. III. Fate of a heavy oil in the marine environment. Environ Sci Technol 41:3075–3082

    Article  PubMed  Google Scholar 

  22. Dutta TK, Harayama S (2001) Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl Environ Microbiol 67:1970–1974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Dyksterhouse SE, Gray JP, Herwig RP et al (1995) Cycloclasticus pugetii gen. nov., sp. nov., an Aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123

    Article  CAS  PubMed  Google Scholar 

  24. Fingas MF (1995) A literature review of the physics and predictive modelling of oil spill evaporation. J Hazard Mater 42:157–175

    Article  CAS  Google Scholar 

  25. Gallego S, Vila J, Tauler M et al (2013) Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation. doi:10.1007/s10532-013-9680-z

    PubMed  Google Scholar 

  26. Giebel HA, Kalhoefer D, Lemke A et al (2011) Distribution of Roseobacter RCA and SAR11 lineages in the North Sea and characteristics of an abundant RCA isolate. ISME J 5:8–19

    Article  PubMed Central  PubMed  Google Scholar 

  27. Gilbert JA, Steele JA, Caporaso JG et al (2012) Field, Defining seasonal marine microbial community dynamics. ISME J 6:298–308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Golyshin PN, Chernikova TN, Abraham WR et al (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52:901–911

    Article  CAS  PubMed  Google Scholar 

  29. Harayama S, Kishira H, Kasai Y et al (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70

    CAS  PubMed  Google Scholar 

  30. Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil, Nature reviews. Microbiology 4:173–182

    CAS  PubMed  Google Scholar 

  31. Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214

    Article  CAS  PubMed  Google Scholar 

  32. Hedlund BP, Staley JT (2001) Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. Int J Syst Evol Microbiol 51:61–66

    CAS  PubMed  Google Scholar 

  33. Hara A, Baik SH, Syutsubo K et al (2004) Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environ Microbiol 6:191–197

    Article  CAS  PubMed  Google Scholar 

  34. Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753

    Article  CAS  PubMed  Google Scholar 

  35. Harris BC, Bonner JS, McDonald TJ et al (2002) Bioavailability of chemically-dispersed crude oil. In: Proceedings of the twenty-fifth Arctic and Marine Oilspill Program (AMOP) Technical Seminar, Calgary, AB, Canada, pp 895–905

  36. Iwabuchi N, Sunairi M, Urai M et al (2002) Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl Environ Microbiol 68:2337–2343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Jenkins ME, Adams MA (2011) Respiratory quotients and Q10 of soil respiration in sub-alpine Australia reflect influences of vegetation types. Soil Biol Biochem 43:1266–1274

    Article  CAS  Google Scholar 

  38. Jiang WJ, Chen L, Batchu SR et al (2014) Oxidation of microcystin-LR by ferrate(VI): kinetics, degradation pathways, and toxicity assessments. Environ Sci Technol 48(20):12164–12172

    Article  CAS  PubMed  Google Scholar 

  39. Jiang WJ, Pelaez M, Dionysios D et al (2013) Chromium(VI) removal by maghemite nanoparticles. Chem Eng J 222(15):527–533

    Article  CAS  Google Scholar 

  40. Jones DM, Head IM, Gray ND et al (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180

    Article  CAS  PubMed  Google Scholar 

  41. Kanaly RA, Harayama S (2010) Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteriambt-130 136.164. Microb Biotechnol 3:136–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Kasai Y, Shindo K, Harayama S et al (2003) Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from cycloclasticus sp. strain A5. Appl Environ Microbiol 69:6688–6697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Kim SJ, Choi DH, Sim DS et al (2005) Evaluation of bioremediation effectiveness on crude oil-contaminated sand. Chemosphere 59:845–852

    Article  CAS  PubMed  Google Scholar 

  45. Kiran GS, Hema TA, Gandhimathi R et al (2009) Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf B 73:250–256

    Article  CAS  Google Scholar 

  46. Ko JY, Day JW (2005) A review of ecological impacts of oil and gas development on coastal ecosystems in the Mississippi Delta. Ocean Coast Manag 47:597–623

    Article  Google Scholar 

  47. Liu SY, Zhao YP, Jiang WJ et al (2014) Inactivation of Microcystis aeruginosa by electron beam irradiation. Water Air Soil Pollut 225:2093

    Article  Google Scholar 

  48. Liu YC, Li LZ, Wu Y et al (2010) Isolation of an alkane-degrading Alcanivorax sp. strain 2B5 and cloning of the alkB gene. Bioresour Technol 101:310–316

    Article  CAS  PubMed  Google Scholar 

  49. Mills MA, Bonner JS, Page CA et al (2004) Evaluation of bioremediation strategies of a controlled oil release in a wetland. Mar Pollut Bull 49:425–435

    Article  CAS  PubMed  Google Scholar 

  50. Mnif S, Sayadi S, Chamkha M (2014) Biodegradative potential and characterization of a novel aromatic-degrading bacterium isolated from a geothermal oil field under saline and thermophilic conditions. Int Biodeterior Biodegradation 86:258–264

    Article  CAS  Google Scholar 

  51. Oropesa AL, Pérez-López M, Hernández D et al (2007) Acetylcholinesterase activity in seabirds affected by the Prestige oil spill on the Galician coast (NW Spain). Sci Total Environ 372:532–538

    Article  CAS  PubMed  Google Scholar 

  52. Oudot J, Merlin FX, Pinvidic P (1998) Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Mar Environ Res 45:113–125

    Article  CAS  Google Scholar 

  53. Page CA, Bonner JS, Sumner PL et al (2000) Behavior of a chemically-dispersed oil and a whole oil on a near-shore environment. Water Res 34:2507–2516

    Article  CAS  Google Scholar 

  54. Pasumarthi R, Chandrasekaran S, Mutnuri S (2013) Biodegradation of crude oil by Pseudomonas aeruginosa and Escherichia fergusonii isolated from the Goan coast. Mar Pollut Bull 76:276–282

    Article  CAS  PubMed  Google Scholar 

  55. Peng GW, Yang GX, Liu XC et al (2008) Isolation of a bacteria strain degrading crude oil and its degradation characteristics Chemical industry and engineering progress 27(531–534):557

    Google Scholar 

  56. Poland JS, Riddle MJ, Zeeb BA (2003) Contaminants in the Arctic and the Antarctic: a comparison of sources, impacts, and remediation options. Polar Record 39:369–383

    Article  Google Scholar 

  57. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Pritchard PH (1991) EPA ‘s Alaska oil spill bioremediation project. Environ Sci Technol 25:372–379

    Article  CAS  Google Scholar 

  59. Prince RC, McFarlin KM, Butler JD et al (2013) The primary biodegradation of dispersed crude oil in the sea. Chemosphere 90:521–526

    Article  CAS  PubMed  Google Scholar 

  60. Meckenstock Rainer U (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 49(1):27–36

    Article  CAS  PubMed  Google Scholar 

  61. Robador A, Brüchert V, Jørgensen BB (2009) The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Environ Microbiol 11:1692–1703

    Article  CAS  PubMed  Google Scholar 

  62. Rontani JF, Bosser-Joulak F, Rambeloarisoa E (1985) Analytical study of Asthart crude oil asphaltenes biodegradation. Chemosphere 14:1413–1422

    Article  CAS  Google Scholar 

  63. Saito A, Iwabuchi T, Harayama S (1999) Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere 38(6):1331–1337

    Article  CAS  PubMed  Google Scholar 

  64. Shi J, Chen Z, Hu X et al (2000) The effects of petroleum-degrading bacteria on the n-alkanes. Donghai Mar Sci 18:21–27

    Google Scholar 

  65. Singer ME, Finnerty WR (1984) Microbial Metabolism of Straight-Chain and Branched Alkanes. Macmillan Publishing Co., New York

    Google Scholar 

  66. Singh H (2006) Mycoremediation: Fungal Bioremediation. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  67. Soddell JA, Stainsby FM, Eales KL et al (2006) Gordonia def luvii sp. nov., an actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 56:2265–2269

    Article  CAS  PubMed  Google Scholar 

  68. Staley JT (2010) Cycloclasticus: a genus of marine polycyclic aromatic hydrocarbon degrading bacteria. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg, pp 1782–1785

    Google Scholar 

  69. Swannell RPJ, Mitchell D, Lethbridge G et al (1999) A field demonstration of the efficacy of bioremediation to treat oiled shorelines following the Sea Empress incident. Environ Technol 20:863–873

    Article  CAS  Google Scholar 

  70. Torres MA, Barros MP, Campos SCG et al (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71:1–15

    Article  CAS  PubMed  Google Scholar 

  71. Venosa AD, Suidan MT, Wrenn BA et al (1996) Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ Sci Technol 30:1764–1775

    Article  CAS  Google Scholar 

  72. Vila J, López Z, Sabaté J et al (2001) Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5497–5505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Wang Y, Lau PCK, Button DK (1996) A marine oligobacterium harboring genes known to be part of aromatic hydrocarbon degradation pathways of soil pseudomonads. Appl Environ Microbiol 62:2169–2173

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Yakimov MM, Giuliano L, Gentile G et al (2003) Golyshin, Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785

    Article  CAS  PubMed  Google Scholar 

  75. Yakimov MM, Golyshin PN, Lang S et al (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348

    Article  CAS  PubMed  Google Scholar 

  76. Yassine MH, Suidan MT, Venosa AD (2013) Microbial kinetic model for the degradation of poorly soluble organic materials. Water Res 47:1585–1595

    Article  CAS  PubMed  Google Scholar 

  77. Yuan HL, Yang JS, Wang ZS et al (2003) Microorganism screening for petroleum degradation and degrading characteristics. China Environmental Science 23:157

    CAS  Google Scholar 

  78. Yumoto I, Nakamura A, Iwata H et al (2002) A novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90

    CAS  PubMed  Google Scholar 

  79. Zhang JL, Li ZY, Wang L et al (2003) Biological degradation of crude oil in seawater. J Univ Sci Technol Beijing 25:410–413

    CAS  Google Scholar 

  80. Zhang ZE, Yan YF, Zhang L et al (2014) Hollow fiber membrane contactor absorption of CO2 from the flue gas: review and perspective. Global NEST Journal 16(2):355–374

    CAS  Google Scholar 

  81. Zhang Z, Yan Y, Zhang L et al (2014) Theoretical study on CO2 absorption from biogas by membrane contactors: effect of operating parameters. Ind Eng Chem Res 53(36):14075–14083

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 51408347 and 21307149), the Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, SOA (Grant No. 201407), Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (Grant No. 2014RCJJ018), and the excellent young and middle-aged scientists of Shandong Province (Grant No. BS2013NJ019). Liping Wang was supported by NHMRC Grant (1094606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Yu, Y., Bai, Y. et al. Marine Oil-Degrading Microorganisms and Biodegradation Process of Petroleum Hydrocarbon in Marine Environments: A Review. Curr Microbiol 71, 220–228 (2015). https://doi.org/10.1007/s00284-015-0825-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0825-7

Keywords

Navigation