Skip to main content

Advertisement

Log in

Molecular Characterization and Genetic Diversity of Insecticidal Crystal Protein Genes in Native Bacillus thuringiensis Isolates

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The Western Ghats of Karnataka natural ecosystem are among the most diverse and is one of the eight hottest hotspots of biological diversity in the world, that runs along the western part of India through four states including Karnataka. Bacillus thuringiensis (Bt) strains were isolated from soils of Western Ghats of Karnataka and characterized by molecular and analytical methods as a result of which 28 new Bt-like isolates were identified. Bt strains were isolated from soil samples using sodium acetate selection method. The morphology of crystals was studied using light and phase contrast microscopy. Isolates were further characterized for insecticidal cry gene by PCR, composition of toxins in bacterial crystals by SDS-PAGE cloning, sequencing and evaluation of toxicity was done. As a result 28 new Bt-like isolates were identified. Majority of the isolates showed the presence of a 55 kDa protein bands on SDS-PAGE while the rest showed 130, 73, 34, and 25 kDa bands. PCR analysis revealed predominance of Coleopteran-active cry genes in these isolates. The variations in the nucleotide sequences, crystal morphology, and mass of crystal protein(s) purified from the Bt isolates revealed genetic and molecular diversity. Three strains containing Coleopteran-active cry genes showed higher activity against larvae Myllocerus undecimpustulatus undatus Marshall (Coleoptera: Curculionidae) than B. thuringiensis subsp. Morrisoni. Results indicated that Bt isolates could be utilized for bioinsecticide production, aiming to reduce the use of chemical insecticide which could be useful to use in integrated pest management to control agriculturally important pests for sustainable crop production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arnaut G, Boets A, De Rudder K, Vanneste S, Van Rie J (2011) Insecticidal proteins derived from Bacillus thuringiensis. United States Patent Application 20110004964

  2. Van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16

    Article  PubMed  Google Scholar 

  3. Ben-Dov E, Zaritsky A, Dahan E, Barak Z, Sinai R, Manasherob R, Khameaev A, Troitskaya E, Dubitsky A, Berezina N, Margalith Y (1997) Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl Environ Microbiol 63(12):4883–4890

    PubMed  CAS  Google Scholar 

  4. Bourque SN, Valero JR, Mercier J, Lavoie MC, Levesque RC (1993) Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis. Appl Environ Microbiol 59(2):523–527

    PubMed  CAS  Google Scholar 

  5. Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos FJ, Pena G, Valdez MEN, Soberon M, Quintero R (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64(12):4965–4972

    PubMed  CAS  Google Scholar 

  6. Guereca L, Bravo A (1999) The oligomeric state of Bacillus thuringiensis Cry toxins in solution. Biochim Biophys Acta 1429:342–350

    Article  PubMed  CAS  Google Scholar 

  7. Koo BT, Park SH, Choi SK, Shin BS, Kim JI, Yu JH (1995) Cloning of a novel crystal protein gene cry1K from Bacillus thuringiensis subsp. morrisoni. FEMS Microbiol Lett 134:159–164

    Article  PubMed  CAS  Google Scholar 

  8. Lee CS, Aronson AI (1991) Cloning and analysis of δ-endotoxin genes from Bacillus thuringiensis subsp. alesti. J Bacteriol 173:6635–6638

    PubMed  CAS  Google Scholar 

  9. Nazarian A, Jahangiri R, Jouzani GS, Seifinejad A, Soheilivand S, Bagheri O, Keshavarzi M, Alamisaeid K (2009) Coleopteran-specific and putative novel cry genes in Iranian native Bacillus thuringiensis collection. J Invertebr Pathol 102(2):101–109

    Article  PubMed  CAS  Google Scholar 

  10. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Laboratory Press, New York

    Google Scholar 

  11. Hongyu Z, Ziniu Y, Wangxi D (2000) Composition and ecological distribution of Cry proteins and their genotypes of Bacillus thuringiensis isolates from warehouses in China. J Invertebr Pathol 76:191–197

    Article  PubMed  CAS  Google Scholar 

  12. Mahadeva Swamy HM, Asokan R, Arora DK, Nagesha SN, Birah Ajanta, Mahmood Riaz (2011) Cloning, characterization and diversity of insecticidal crystal protein genes of Bacillus thuringiensis native isolates from soils of Andaman and Nicobar Islands. Curr Microbiol 63:420–425

    Article  PubMed  CAS  Google Scholar 

  13. Ramalakshmi A, Udayasuriyan V (2010) Diversity of Bacillus thuringiensis isolated from Western Ghats of Tamil Nadu State, India. Curr Microbiol 61(1):13–18

    Article  PubMed  CAS  Google Scholar 

  14. Guz K, Kucinksa J, Lonc E, Dorsoszkiewicz W (2005) Differentiated pattern of inclusions of newly isolated Bacillus thuringiensis strains from Silesia in Poland. Pol J Microbiol 54(4):263–269

    PubMed  CAS  Google Scholar 

  15. Porcar M, Jua’Rez-Pe’Rez VM (2003) PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol Rev 26(5):419–432

    Article  PubMed  CAS  Google Scholar 

  16. Armengol G, Escobar MC, Maldonado ME, Orduz S (2007) Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects. J Appl Microbiol 102(1):77–88

    Article  PubMed  CAS  Google Scholar 

  17. Sachidanandham R, Jayaraman K (2003) Formation of spontaneous asporogenic variants of Bacillus thuringiensis subsp. galleriae in continuous cultures. Appl Microbiol Biotechnol 40:504–507

    Google Scholar 

  18. Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):807–813

    PubMed  CAS  Google Scholar 

  19. Asokan R, Puttaswamy (2007) Isolation and charactersiation of Bacillus thuringiensis Berliner from soil, leaf, seed dust and insect cadaver. J Biol Control 21(1):83–90

    Google Scholar 

  20. Balasubramanian P, Jayakumar R, Shambharkar P, Unnamalai N, Pandian SK, Kumaraswami NS, Ilangovan R, Sekar V (2002) Cloning and characterization of the crystal protein-encoding gene of Bacillus thuringiensis subsp. Yunnanensis. Appl Environ Microbiol 68(1):408–411

    Article  PubMed  Google Scholar 

  21. Ben-Dov E, Manasherob R, Zaritsky A, Barak Z, Margalith Y (2001) PCR analysis of cry7 genes in Bacillus thuringiensis by the five conserved blocks of toxins. Curr Microbiol 42(2):96–99

    PubMed  CAS  Google Scholar 

  22. Carozzi NB, Kramer VC, Warren GW, Evola S, Koziel MG (1991) Prediction of insecticidal activity 261 of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl Environ Microbiol 57(11):3057–3061

    PubMed  CAS  Google Scholar 

  23. Chatterjee SN, Bhattacharya T, Dangar TK, Chandra G (2007) Ecology and diversity of Bacillus thuringiensis in soil environment. Afr J Biotechnol 6(13):1587–1591

    CAS  Google Scholar 

  24. Travers RS, Martin PAW, Reichelderfer CF (1987) Selective process for efficient isolation of soil Bacillus spp. Appl Environ Microbiol 53:1263–1266

    PubMed  CAS  Google Scholar 

  25. Martin PAW, Travers RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55(10):2437–2442

    PubMed  CAS  Google Scholar 

  26. Vidal-Quist JC, Castanera P, Gonzalez-Cabrera J (2009) Diversity of Bacillus thuringiensis strains isolated from citrus orchards in Spain and evaluation of their insecticidal activity against Ceratitis capitata. J Microbiol Biotechnol 19(8):749–759

    PubMed  CAS  Google Scholar 

  27. Salehi Jouzani GR, Seifinejad A, Saeedizadeh A, Nazarian A, Yousefloo M, Soheilivand S, Mousivand M, Jahangiri R, Yazdani M, Maali Amiri R, Akbari S (2008) Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free living and plant parasitic nematodes. Can J Microbiol 54(10):812–822

    Article  PubMed  CAS  Google Scholar 

  28. Salehi Jouzani GR, Abad AP, Seifinejad A, Marzban R, Kariman K, Maleki B (2008) Distribution and diversity of dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran. J Ind Microbiol Biotechnol 35(2):83–94

    Article  CAS  Google Scholar 

  29. Brizzard BL, Schnepf HE, Kronstad JW (1991) Expression of the cryIB crystal protein gene of Bacillus thuringiensis. Mol Gen Genet 231:59–64

    Article  PubMed  CAS  Google Scholar 

  30. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  31. Chambers JA, Jelen A, Gilbert MP, Jany CS, Johnson TB, Gawron-Burke C (1991) Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp. aizawai. J Bacteriol 173:3966–3976

    PubMed  CAS  Google Scholar 

  32. Choi SK, Shin BS, Kong EM, Rho HM, Park SH (2000) Cloning of a new Bacillus thuringiensis cry1I-type crystal protein gene. Curr Microbiol 41:65–69

    Article  PubMed  CAS  Google Scholar 

  33. Kuo WS, Lin JH, Tzeng CC, Kao SS, Chak KF (1999) Cloning of two new cry genes from B. thuringiensis subsp. Wuhanensis strain. Curr Microbiol 40:227–232

    Article  Google Scholar 

  34. Rukmini V, Reddy CY, Venkateswerlu G (2000) Bacillus thuringiensis crystal δ-endotoxin: role of proteases in the conversion of protoxin to toxin. Biochimie 82(2):109–116

    Article  PubMed  CAS  Google Scholar 

  35. Espinasse S, Gohar M, Chaufaux J, Buisson C, Perchat S, Sanchis V (2002) Correspondence of high levels of beta-exotoxin I and the presence of cry1B in Bacillus thuringiensis. Appl Environ Microbiol 68(9):4182–4186

    Article  PubMed  CAS  Google Scholar 

  36. Honee G, Van Der Salm T, Visser B (1988) Nucleotide sequence of a crystal protein gene isolated from 290 B. thuringiensis subsp. entomocidus 60.5 coding for a toxin highly active against Spodoptera species. Nucl Acids Res 16(13):6240

    Article  PubMed  CAS  Google Scholar 

  37. Jua’Rez-Pe’Rez VM, Ferrandis MD, Frutos R (1997) PCR-based approach for detection of novel Bacillus thuringiensis cry genes. Appl Environ Microbiol 63(8):2997–3002

    Google Scholar 

  38. Kim HS, Lee DW, Woo SD, Yu YM, Kang SK (1998) Seasonal distribution and characterization of Bacillus thuringiensis isolated from sericultural environments in Korea. J Gen Appl Microbiol 44:133–138

    Article  PubMed  CAS  Google Scholar 

  39. Ejiofor AO, Johnson T (2002) Physiological and molecular detection of crystalliferous Bacillus thuringiensis strains from habitats in the South Central United States. J Ind Microbiol Biotechnol 28(5):284–290

    Article  PubMed  CAS  Google Scholar 

  40. Bero′n CM, Curatti L, Salerno GL (2005) New strategy for identification of novel cry-type genes from Bacillus thuringiensis strains. Appl Environ Microbiol 71(2):761–765

    Article  Google Scholar 

  41. Ellis RT, Stockhoff BA, Stamp L, Schnepf HE, Schwab GE, Knuth M, Russel J, Cadineau GA, Narva KE (2002) Novel Bacillus thuringiensis binary insecticidal crystal proteins active on western corn rootworm Diabrotica virgifera virgifera LeConte. Appl Environ Microbiol 68(3):1137–1145

    Article  PubMed  CAS  Google Scholar 

  42. Uribe D, Martinez W, Ceron J (2003) Distribution and diversity of cry genes in native strains of B. thuringiensis obtained from different ecosystems from Colombia. J Invertebr Pathol 82(2):119–127

    Article  PubMed  CAS  Google Scholar 

  43. Rang C (1997) Simultaneous production of the 34-kDa and 40-kDa proteins from Bacillus thuringiensis subsp. thompsoni is required for the formation of inclusion bodies. FEBS Lett 412(3):587–591

    Article  PubMed  CAS  Google Scholar 

  44. Ohba M, Yu YM, Aizawa K (1987) Non-toxic isolates of Bacillus thuringiensis producing parasporal 319 inclusions with unusual protein components. Lett Appl Microbiol 5:29–32

    Article  CAS  Google Scholar 

  45. Lee HS, Jang JS, Choi SK, Lee DW, Kim EJ, Jung HC, Pan JG (2007) Identification and expression of GH-8 family chitosanases from several Bacillus thuringiensis subspecies. FEMS Microbiol Lett 277:133–141

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to ICAR, New Delhi for funding this study under Network project on Application of microbes in agriculture and allied sectors (AMAAS). This project is funded under ICAR network project on Application of microbes for agriculture and allied sector through National Bureau of Agriculturally Important Micro organisms (NBAIM). This is a part of doctoral degree research work. The authors are also grateful to Geetha G. Thimmegowda, Division of Entomology & Nematology, Indian Institute of Horticultural Research (IIHR), Hessarghatta lake post, Bangalore 560089, Karnataka, India for providing the Mango ash weevil test insects for bio assay studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Mahadeva Swamy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahadeva Swamy, H.M., Asokan, R., Mahmood, R. et al. Molecular Characterization and Genetic Diversity of Insecticidal Crystal Protein Genes in Native Bacillus thuringiensis Isolates. Curr Microbiol 66, 323–330 (2013). https://doi.org/10.1007/s00284-012-0273-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0273-6

Keywords

Navigation