Skip to main content
Log in

Resolution of allergic asthma

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Allergic asthma is an inflammatory disease of the airways characterized by recurrent episodes of wheezing and bronchoconstriction. Chronic inflammation may finally lead to structural damage followed by airway remodeling. Various studies in recent years contributed to unravel important aspects of the immunopathogenesis of asthma and adapted new pharmaceutical developments. Here, I consider some novel insights into the immunopathogenesis of asthma and the protective and pathogenic roles of some innate and adaptive immune cells as well as the function of soluble mediators such as cytokines. Particular attention will be given to new concepts on resolution of chronic airway inflammation for prevention of airway structural damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hartert TV, Peebles RS Jr (2000) Epidemiology of asthma: the year in review. Curr Opin Pulm Med 6(1):4–9

    CAS  PubMed  Google Scholar 

  2. Xepapadaki P, Bachert C, Finotto S, Jartti T, Konstantinou GN, Kiefer A, Kowalski M, Lewandowska-Polak A, Lukkarinen H, Roumpedaki E, Sobanska A, Sintobin I, Vuorinen T, Zhang N, Zimmermann T, Papadopoulos NG (2018) Contribution of repeated infections in asthma persistence from preschool to school age: design and characteristics of the PreDicta cohort. Pediatr Allergy Immunol 29(4):383–393

    PubMed  Google Scholar 

  3. Megremis S, Niespodziana K, Cabauatan C, Xepapadaki P, Kowalski ML, Jartti T, Bachert C, Finotto S, West P, Stamataki S, Lewandowska-Polak A, Lukkarinen H, Zhang N, Zimmermann T, Stolz F, Neubauer A, Akdis M, Andreakos E, Valenta R, Papadopoulos NG (2018) Rhinovirus species-specific antibodies differentially reflect clinical outcomes in health and asthma. Am J Respir Crit Care Med

  4. Earl CS, An SQ, Ryan RP (2015) The changing face of asthma and its relation with microbes. Trends Microbiol 23(7):408–418

    CAS  PubMed Central  Google Scholar 

  5. Strunk RC, Bloomberg GR (2006) Omalizumab for asthma. N Engl J Med 354(25):2689–2695

    CAS  PubMed  Google Scholar 

  6. Chen Q, Guo X, Deng N, Liu L, Chen S, Wang A, Li R, Huang Y, Ding X, Yu H, Hu S, Nie H (2019) alpha-galactosylceramide treatment before allergen sensitization promotes iNKT cell-mediated induction of Treg cells, preventing Th2 cell responses in murine asthma. J Biol Chem 294(14):5438–5455

    CAS  Google Scholar 

  7. Chia YL, Yan L, Yu B, Wang B, Barker P, Goldman M, Roskos L (2019) Relationship Between benralizumab exposure and efficacy for patients with severe eosinophilic asthma. Clin Pharmacol Ther 106(2):383–390

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dharmage SC, Perret JL, Custovic A (2019) Epidemiology of asthma in children and adults. Front Pediatr 7:246

    PubMed  PubMed Central  Google Scholar 

  9. Fishe JN, Palmer E, Finlay E, Smotherman C, Gautam S, Hendry P, Hendeles L (2019) A statewide study of the epidemiology of emergency medical services’ management of pediatric asthma. Pediatr Emerg Care

  10. Morgan BW, Grigsby MR, Siddharthan T, Chowdhury M, Rubinstein A, Gutierrez L, Irazola V, Miranda JJ, Bernabe-Ortiz A, Alam D, Wise RA, Checkley W (2019) Epidemiology and risk factors of asthma-chronic obstructive pulmonary disease overlap in low- and middle-income countries. J Allergy Clin Immunol 143(4):1598–1606

    PubMed  Google Scholar 

  11. Sordillo JE, Kelly R, Bunyavanich S, McGeachie M, Qiu W, Croteau-Chonka DC, Soto-Quiros M, Avila L, Celedon JC, Brehm JM, Weiss ST, Gold DR, Litonjua AA (2015) Genome-wide expression profiles identify potential targets for gene-environment interactions in asthma severity. J Allergy Clin Immunol 136(4):885–92 e2

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Holgate ST (2012) Innate and adaptive immune responses in asthma. Nat Med 18(5):673–683

    CAS  PubMed  Google Scholar 

  13. Lambrecht BN, Hammad H, Fahy JV (2019) The cytokines of asthma. Immunity 50(4):975–991

    CAS  PubMed  Google Scholar 

  14. Alagha K, Bourdin A, Vernisse C, Garulli C, Tummino C, Charriot J, Vachier I, Suehs C, Chanez P, Gras D (2019) Goblet cell hyperplasia as a feature of neutrophilic asthma. Clin Exp Allergy 49(6):781–788

    CAS  PubMed  Google Scholar 

  15. Bullone M, Carriero V, Bertolini F, Folino A, Mannelli A, Di Stefano A, Gnemmi I, Torchio R, Ricciardolo FLM (2019) Elevated serum IgE, OCS-dependence and IL-17/22 expression in highly neutrophilic asthma. Eur Respir J

  16. Kalchiem-Dekel O, Yao X, Levine SJ (2019) Meeting the challenge of identifying new treatments for type 2-low neutrophilic asthma. Chest

  17. Ravi A, Chowdhury S, Dijkhuis A, Bonta PI, Sterk PJ, Lutter R (2019) Neutrophilic inflammation in asthma and defective epithelial translational control. Eur Respir J 54(2)

    PubMed  Google Scholar 

  18. Clark KL, Li Y, Krauss MR, Kelley PW (2000) The asthma accession standard: a survival analysis of military recruits, 1995 to 1997. Mil Med 165(11):852–854

    CAS  PubMed  Google Scholar 

  19. Liu H, Tan J, Liu J, Feng H, Pan D (2019) Altered mast cell activity in response to rhinovirus infection provides novel insight into asthma. J Asthma 18:1–9

    Google Scholar 

  20. Salomonsson M, Malinovschi A, Kalm-Stephens P, Dahlin JS, Janson C, Alving K, Hallgren J (2019) Circulating mast cell progenitors correlate with reduced lung function in allergic asthma. Clin Exp Allergy 49(6):874–882

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Komi DEA, Bjermer L (2019) Mast Cell-mediated orchestration of the immune responses in human allergic asthma: current insights. Clin Rev Allergy Immunol 56(2):234–247

    Google Scholar 

  22. Petsky HL, Cates CJ, Kew KM, Chang AB (2018) Tailoring asthma treatment on eosinophilic markers (exhaled nitric oxide or sputum eosinophils): a systematic review and meta-analysis. Thorax 73(12):1110–1119

    Google Scholar 

  23. Cooper K, Frampton G, Harris P, Rose M, Chorozoglou M, Pickett K (2018) Reslizumab for Treating asthma with elevated blood eosinophils inadequately controlled by inhaled corticosteroids: an evidence review group perspective of a NICE single technology appraisal. pharmacoeconomics 36(5):545–553

    PubMed  Google Scholar 

  24. Yoshikawa S, Oh-Hora M, Hashimoto R, Nagao T, Peters L, Egawa M, Ohta T, Miyake K, Adachi T, Kawano Y, Yamanishi Y, Karasuyama H (2019) Pivotal role of STIM2, but not STIM1, in IL-4 production by IL-3-stimulated murine basophils. Sci Signal 12(576)

    CAS  PubMed  Google Scholar 

  25. Cirino M, Lagente V, Lefort J, Vargaftig BB (1986) A study with BN 52021 demonstrates the involvement of PAF-acether in IgE-dependent anaphylactic bronchoconstriction. Prostaglandins 32(1):121–126

    CAS  PubMed  Google Scholar 

  26. Casale TB, Luskin AT, Busse W, Zeiger RS, Trzaskoma B, Yang M, Griffin NM, Chipps BE (2019) Omalizumab Effectiveness by biomarker status in patients with asthma: evidence from PROSPERO, a prospective real-world study. J Allergy Clin Immunol Pract 7(1):156–164 e1

    PubMed  Google Scholar 

  27. Matucci A, Vultaggio A, Maggi E, Kasujee I (2018) Is IgE or eosinophils the key player in allergic asthma pathogenesis? Are we asking the right question? Respir Res 19(1):113

    PubMed Central  Google Scholar 

  28. Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13(1):9–22

    CAS  PubMed  Google Scholar 

  29. Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D, Janss T, Starkl P, Ramery E, Henket M, Schleich FN, Radermecker M, Thielemans K, Gillet L, Thiry M, Belvisi MG, Louis R, Desmet C, Marichal T, Bureau F (2016) Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest 126(9):3279–3295

    PubMed  PubMed Central  Google Scholar 

  30. Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ, Ovington KS, Behm CA, Kohler G, Young IG, Matthaei KI (1996) IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4(1):15–24

    CAS  PubMed  Google Scholar 

  31. Radermecker C, Sabatel C, Vanwinge C, Ruscitti C, Marechal P, Perin F, Schyns J, Rocks N, Toussaint M, Cataldo D, Johnston SL, Bureau F, Marichal T (2019) Locally instructed CXCR4(hi) neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. Nat Immunol

  32. Ekstedt S, Stenberg H, Tufvesson E, Diamant Z, Bjermer L, Kumlien Georen S, Cardell LO (2019) The potential role of CD16(high) CD62L(dim) neutrophils in the allergic asthma. Allergy

  33. Busse WW (2019) What are those neutrophils doing in severe asthma anyway? J Allergy Clin Immunol Pract 7(2):526–528

    PubMed  Google Scholar 

  34. Grunwell JR, Stephenson ST, Tirouvanziam R, Brown LAS, Brown MR, Fitzpatrick AM (2019) Children with neutrophil-predominant severe asthma have proinflammatory neutrophils with enhanced survival and impaired clearance. J Allergy Clin Immunol Pract 7(2):516–525 e6

    PubMed  Google Scholar 

  35. Radermecker C, Louis R, Bureau F, Marichal T (2018) Role of neutrophils in allergic asthma. Curr Opin Immunol 54:28–34

    CAS  PubMed  Google Scholar 

  36. Saradna A, Do DC, Kumar S, Fu QL, Gao P (2018) Macrophage polarization and allergic asthma. Transl Res 191:1–14

    CAS  PubMed  Google Scholar 

  37. Chung FT, Huang HY, Lo CY, Huang YC, Lin CW, He CC, He JR, Sheng TF, Wang CH (2019) Increased ratio of matrix metalloproteinase-9 (MMP-9)/Tissue inhibitor metalloproteinase-1 from alveolar macrophages in chronic asthma with a fast decline in FEV1 at 5-year follow-up. J Clin Med 8(9)

    PubMed Central  Google Scholar 

  38. Tokunaga Y, Imaoka H, Kaku Y, Kawayama T, Hoshino T (2019) The significance of CD163-expressing macrophages in asthma. Ann Allergy Asthma Immunol 123(3):263–270

    CAS  PubMed  Google Scholar 

  39. de Groot LES, van der Veen TA, Martinez FO, Hamann J, Lutter R, Melgert BN (2019) Oxidative stress and macrophages: driving forces behind exacerbations of asthma and chronic obstructive pulmonary disease? Am J Physiol Lung Cell Mol Physiol 316(2):L369–L384

    PubMed  Google Scholar 

  40. Ubel C, Graser A, Koch S, Rieker RJ, Lehr HA, Muller M, Finotto S (2014) Role of Tyk-2 in Th9 and Th17 cells in allergic asthma. Sci Rep 4:5865

    PubMed  PubMed Central  Google Scholar 

  41. Chen Z, Wang L (2019) Ovalbumin induces natural killer cells to secrete Th2 cytokines IL5 and IL13 in a mouse model of asthma. Mol Med Rep 19(4):3210–3216

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Leomicronn B (2017) T cells in allergic asthma: key players beyond the Th2 pathway. Curr Allergy Asthma Rep 17(7):43

    PubMed  Google Scholar 

  43. Krabbendam L, Bal SM, Spits H, Golebski K (2018) New insights into the function, development, and plasticity of type 2 innate lymphoid cells. Immunol Rev 286(1):74–85

    CAS  PubMed  Google Scholar 

  44. Nakamura Y, Ghaffar O, Olivenstein R, Taha RA, Soussi-Gounni A, Zhang DH, Ray A, Hamid Q (1999) Gene expression of the GATA-3 transcription factor is increased in atopic asthma. J Allergy Clin Immunol 103(2 Pt 1):215–222

    CAS  PubMed  Google Scholar 

  45. Finotto S, De Sanctis GT, Lehr HA, Herz U, Buerke M, Schipp M, Bartsch B, Atreya R, Schmitt E, Galle PR, Renz H, Neurath MF (2001) Treatment of allergic airway inflammation and hyperresponsiveness by antisense-induced local blockade of GATA-3 expression. J Exp Med 193(11):1247–1260

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Krug N, Hohlfeld JM, Kirsten AM, Kornmann O, Beeh KM, Kappeler D, Korn S, Ignatenko S, Timmer W, Rogon C, Zeitvogel J, Zhang N, Bille J, Homburg U, Turowska A, Bachert C, Werfel T, Buhl R, Renz J, Garn H, Renz H (2015) Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N Engl J Med 372(21):1987–1995

    PubMed  Google Scholar 

  47. Ubel C, Sopel N, Graser A, Hildner K, Reinhardt C, Zimmermann T, Rieker RJ, Maier A, Neurath MF, Murphy KM, Finotto S (2014) The activating protein 1 transcription factor basic leucine zipper transcription factor, ATF-like (BATF), regulates lymphocyte- and mast cell-driven immune responses in the setting of allergic asthma. J Allergy Clin Immunol 133(1):198–206 e1-9

    PubMed  Google Scholar 

  48. Jabeen R, Goswami R, Awe O, Kulkarni A, Nguyen ET, Attenasio A, Walsh D, Olson MR, Kim MH, Tepper RS, Sun J, Kim CH, Taparowsky EJ, Zhou B, Kaplan MH (2013) Th9 cell development requires a BATF-regulated transcriptional network. J Clin Invest 123(11):4641–4653

    CAS  PubMed Central  Google Scholar 

  49. Jabeen R, Kaplan MH (2012) The symphony of the ninth: the development and function of Th9 cells. Curr Opin Immunol 24(3):303–307

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaplan MH (2013) Th9 cells: differentiation and disease. Immunol Rev 252(1):104–115

    PubMed  PubMed Central  Google Scholar 

  51. Liao W, Spolski R, Li P, Du N, West EE, Ren M, Mitra S, Leonard WJ (2014) Opposing actions of IL-2 and IL-21 on Th9 differentiation correlate with their differential regulation of BCL6 expression. Proc Natl Acad Sci U S A 111(9):3508–3513

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Licona-Limon P, Henao-Mejia J, Temann AU, Gagliani N, Licona-Limon I, Ishigame H, Hao L, Herbert DR, Flavell RA (2013) Th9 cells drive host immunity against gastrointestinal worm infection. Immunity 39(4):744–757

    CAS  PubMed  Google Scholar 

  53. Neurath MF, Kaplan MH (2017) Th9 cells in immunity and immunopathological diseases. Semin Immunopathol 39(1):1–4

    PubMed  Google Scholar 

  54. Levitt RC, McLane MP, MacDonald D, Ferrante V, Weiss C, Zhou T, Holroyd KJ, Nicolaides NC (1999) IL-9 pathway in asthma: new therapeutic targets for allergic inflammatory disorders. J Allergy Clin Immunol 103(5 Pt 2):S485–S491

    CAS  PubMed  Google Scholar 

  55. Hoppenot D, Malakauskas K, Lavinskiene S, Sakalauskas R (2015) p-STAT6, PU.1, and NF-kappaB are involved in allergen-induced late-phase airway inflammation in asthma patients. BMC Pulm Med 15:122

    PubMed  PubMed Central  Google Scholar 

  56. Hoppenot D, Malakauskas K, Lavinskiene S, Bajoriuniene I, Kalinauskaite V, Sakalauskas R (2015) Peripheral blood Th9 cells and eosinophil apoptosis in asthma patients. Medicina 51(1):10–17

    PubMed  Google Scholar 

  57. Finotto S (2018) B lymphocyte-induced maturation protein 1 (Blimp-1), a negative regulator of TH9 development, orchestrates the resolution of airway inflammation in patients with allergic asthma. J Allergy Clin Immunol

  58. Erpenbeck VJ, Hohlfeld JM, Volkmann B, Hagenberg A, Geldmacher H, Braun A, Krug N (2003) Segmental allergen challenge in patients with atopic asthma leads to increased IL-9 expression in bronchoalveolar lavage fluid lymphocytes. J Allergy Clin Immunol 111(6):1319–1327

    CAS  PubMed  Google Scholar 

  59. Abdelilah S, Latifa K, Esra N, Cameron L, Bouchaib L, Nicolaides N, Levitt R, Hamid Q (2001) Functional expression of IL-9 receptor by human neutrophils from asthmatic donors: role in IL-8 release. J Immunol 166(4):2768–2774

    CAS  PubMed  Google Scholar 

  60. Bhathena PR, Comhair SA, Holroyd KJ, Erzurum SC (2000) Interleukin-9 receptor expression in asthmatic airways In vivo. Lung 178(3):149–160

    CAS  PubMed  Google Scholar 

  61. Cheng G, Arima M, Honda K, Hirata H, Eda F, Yoshida N, Fukushima F, Ishii Y, Fukuda T (2002) Anti-interleukin-9 antibody treatment inhibits airway inflammation and hyperreactivity in mouse asthma model. Am J Respir Crit Care Med 166(3):409–416

    PubMed  Google Scholar 

  62. Shimbara A, Christodoulopoulos P, Soussi-Gounni A, Olivenstein R, Nakamura Y, Levitt RC, Nicolaides NC, Holroyd KJ, Tsicopoulos A, Lafitte JJ, Wallaert B, Hamid QA (2000) IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J Allergy Clin Immunol 105(1 Pt 1):108–115

    CAS  PubMed  Google Scholar 

  63. Toda M, Tulic MK, Levitt RC, Hamid Q (2002) A calcium-activated chloride channel (HCLCA1) is strongly related to IL-9 expression and mucus production in bronchial epithelium of patients with asthma. J Allergy Clin Immunol 109(2):246–250

    CAS  PubMed  Google Scholar 

  64. Oh CK, Leigh R, McLaurin KK, Kim K, Hultquist M, Molfino NA (2013) A randomized, controlled trial to evaluate the effect of an anti-interleukin-9 monoclonal antibody in adults with uncontrolled asthma. Respir Res 14:93

    PubMed Central  Google Scholar 

  65. Rubner FJ, Jackson DJ, Evans MD, Gangnon RE, Tisler CJ, Pappas TE, Gern JE, Lemanske RF Jr (2017) Early life rhinovirus wheezing, allergic sensitization, and asthma risk at adolescence. J Allergy Clin Immunol 139(2):501–507

    Google Scholar 

  66. Bergauer A, Sopel N, Kross B, Vuorinen T, Xepapadaki P, Weiss ST, Blau A, Sharma H, Kraus C, Springel R, Rauh M, Mittler S, Graser A, Zimmermann T, Melichar VO, Kiefer A, Kowalski ML, Sobanska A, Jartti T, Lukkarinen H, Papadopoulos NG, Finotto S (2017) Rhinovirus species/genotypes and interferon-lambda: subtypes, receptor and polymorphisms - missing pieces of the puzzle of childhood asthma? Eur Respir J 49(3)

    PubMed  Google Scholar 

  67. Hansel TT, Tunstall T, Trujillo-Torralbo MB, Shamji B, del-Rosario A, Dhariwal J, Kirk PDW, Stumpf MPH, Koopmann J, Telcian A, Aniscenko J, Gogsadze L, Bakhsoliani E, Stanciu L, Bartlett N, Edwards M, Walton R, Mallia P, Hunt TM, Hunt TL, Hunt DG, Westwick J, Edwards M, Kon OM, Jackson DJ, Johnston SL (2017) A Comprehensive evaluation of nasal and bronchial cytokines and chemokines following experimental rhinovirus infection in allergic asthma: increased interferons (IFN-gamma and IFN-lambda) and type 2 inflammation (IL-5 and IL-13). EBioMedicine 19:128–138

    PubMed Central  Google Scholar 

  68. Sykes A, Macintyre J, Edwards MR, Del Rosario A, Haas J, Gielen V, Kon OM, McHale M, Johnston SL (2014) Rhinovirus-induced interferon production is not deficient in well controlled asthma. Thorax 69(3):240–246

    Google Scholar 

  69. Bielor C, Sopel N, Maier A, Blau A, Sharma H, Vuorinen T, Kross B, Mittler S, Graser A, Mousset S, Melichar VO, Kiefer A, Zimmermann T, Springel R, Holzinger C, Trump S, Taka S, Papadopoulos NG, Weiss ST, Finotto S (2017) Role of TGF-beta in anti-rhinovirus immune responses in asthmatic patients. J Allergy Clin Immunol 140(1):283–286 e10

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Usui T, Nishikomori R, Kitani A, Strober W (2003) GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rbeta2 chain or T-bet. Immunity 18(3):415–428

    CAS  PubMed  Google Scholar 

  71. Zhu J, Jankovic D, Oler AJ, Wei G, Sharma S, Hu G, Guo L, Yagi R, Yamane H, Punkosdy G, Feigenbaum L, Zhao K, Paul WE (2012) The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 37(4):660–673

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669

    CAS  PubMed  Google Scholar 

  73. Neurath MF, Weigmann B, Finotto S, Glickman J, Nieuwenhuis E, Iijima H, Mizoguchi A, Mizoguchi E, Mudter J, Galle PR, Bhan A, Autschbach F, Sullivan BM, Szabo SJ, Glimcher LH, Blumberg RS (2002) The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn’s disease. J Exp Med 195(9):1129–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Finotto S, Neurath MF, Glickman JN, Qin S, Lehr HA, Green FH, Ackerman K, Haley K, Galle PR, Szabo SJ, Drazen JM, De Sanctis GT, Glimcher LH (2002) Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 295(5553):336–338

    CAS  PubMed  Google Scholar 

  75. Liu X, Li S, Jin J, Zhu T, Xu K, Liu C, Zeng Y, Mao R, Wang X, Chen Z (2019) Preventative tracheal administration of interleukin-27 attenuates allergic asthma by improving the lung Th1 microenvironment. J Cell Physiol 234(5):6642–6653

    CAS  PubMed  Google Scholar 

  76. Joerger M, Finn SP, Cuffe S, Byrne AT, Gray SG (2016) The IL-17-Th1/Th17 pathway: an attractive target for lung cancer therapy? Expert Opin Ther Targets 20(11):1339–1356

    CAS  PubMed  Google Scholar 

  77. Reppert S, Boross I, Koslowski M, Tureci O, Koch S, Lehr HA, Finotto S (2011) A role for T-bet-mediated tumour immune surveillance in anti-IL-17A treatment of lung cancer. Nat Commun 2:600

    CAS  PubMed  Google Scholar 

  78. Xu L, Sun WJ, Jia AJ, Qiu LL, Xiao B, Mu L, Li JM, Zhang XF, Wei Y, Peng C, Zhang DS, Xiang XD (2018) MBD2 regulates differentiation and function of Th17 cells in neutrophils- dominant asthma via HIF-1alpha. J Inflamm 15:15

    Google Scholar 

  79. Vroman H, Bergen IM, van Hulst JAC, van Nimwegen M, van Uden D, Schuijs MJ, Pillai SY, van Loo G, Hammad H, Lambrecht BN, Hendriks RW, Kool M (2018) TNF-alpha-induced protein 3 levels in lung dendritic cells instruct TH2 or TH17 cell differentiation in eosinophilic or neutrophilic asthma. 141(5):1620–J Allergy Clin Immunol, 1633 e12

  80. Wang L, Wan H, Tang W, Ni Y, Hou X, Pan L, Song Y, Shi G (2018) Critical roles of adenosine A2A receptor in regulating the balance of Treg/Th17 cells in allergic asthma. Clin Respir J 12(1):149–157

    CAS  PubMed  Google Scholar 

  81. Guan Q, Yang B, Warrington RJ, Mink S, Kalicinsky C, Becker AB, Simons E, Peng Z (2019) Myeloid-derived suppressor cells: roles and relations with Th2, Th17, and Treg cells in asthma. Allergy

  82. Ramakrishnan RK, Al Heialy S, Hamid Q (2019) Role of IL-17 in asthma pathogenesis and its implications for the clinic. Expert Rev Respir Med:1–12

  83. Quan-San Z, Xiaohong X, Ying L, Zhaojia S (2019) Role of Th17-cell related cytokines in geriatric asthma. J Int Med Res 47(2):580–590

    CAS  PubMed  Google Scholar 

  84. Zou XL, Chen ZG, Zhang TT, Feng DY, Li HT, Yang HL (2018) Th17/Treg homeostasis, but not Th1/Th2 homeostasis, is implicated in exacerbation of human bronchial asthma. Ther Clin Risk Manag 14:1627–1636

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Massague J, Attisano L, Wrana JL (1994) The TGF-beta family and its composite receptors. Trends Cell Biol 4(5):172–178

    CAS  PubMed  Google Scholar 

  86. Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, Rudensky AY (2009) CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326(5955):986–991

    CAS  PubMed  PubMed Central  Google Scholar 

  87. DeVries A, Vercelli D (2018) Of pleiotropy and trajectories: Does the TGF-beta pathway link childhood asthma and chronic obstructive pulmonary disease? J Allergy Clin Immunol 141(6):1992–1996

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Branchett WJ, Stolting H, Oliver RA, Walker SA, Puttur F, Gregory LG, Gabrysova L, Wilson MS, O'Garra A, Lloyd CM (2019) A T cell-myeloid IL-10 axis regulates pathogenic IFN-gamma-dependent immunity in a mouse model of type 2-low asthma. J Allergy Clin Immunol

  89. Zonoobi E, Saeedfar K, Pourdowlat G, Masjedi MR, Behmanesh M (2018) The study of IL-10 and IL-17A genes expression in patients with different stages of asthma: a case-control study. Tanaffos 17(3):146–154

    PubMed  PubMed Central  Google Scholar 

  90. Paw M, Wnuk D, Kadziolka D, Sek A, Lasota S, Czyz J, Madeja Z, Michalik M (2018) Fenofibrate reduces the asthma-related fibroblast-to-myofibroblast transition by TGF-beta/Smad2/3 signaling attenuation and connexin 43-dependent phenotype destabilization. Int J Mol Sci 19(9)

    PubMed Central  Google Scholar 

  91. Chen S, Han Y, Chen H, Wu J, Zhang M (2018) Bcl11b regulates IL-17 through the TGF-beta/Smad pathway in HDM-induced asthma. Allergy, Asthma Immunol Res 10(5):543–554

    CAS  Google Scholar 

  92. Haspeslagh E, Vanheerswynghels M, Deswarte K, Van Moorleghem J, Jacquet A, Lambrecht BN, Hammad H (2019) Prophylactic allergen immunotherapy with Der p 2 prevents murine asthma by regulating lung GM-CSF. J Allergy Clin Immunol 143(6):2307–2311 e5

    CAS  PubMed  Google Scholar 

  93. Bohm L, Maxeiner J, Meyer-Martin H, Reuter S, Finotto S, Klein M, Schild H, Schmitt E, Bopp T, Taube C (2015) IL-10 and regulatory T cells cooperate in allergen-specific immunotherapy to ameliorate allergic asthma. J Immunol 194(3):887–897

    PubMed  Google Scholar 

  94. Asamoah F, Kakourou A, Dhami S, Lau S, Agache I, Muraro A, Roberts G, Akdis C, Bonini M, Cavkaytar O, Flood B, Izuhara K, Jutel M, Kalayci O, Pfaar O, Sheikh A (2017) Allergen immunotherapy for allergic asthma: a systematic overview of systematic reviews. Clin Transl Allergy 7:25

    PubMed  PubMed Central  Google Scholar 

  95. Dhami S, Kakourou A, Asamoah F, Agache I, Lau S, Jutel M, Muraro A, Roberts G, Akdis CA, Bonini M, Cavkaytar O, Flood B, Gajdanowicz P, Izuhara K, Kalayci O, Mosges R, Palomares O, Pfaar O, Smolinska S, Sokolowska M, Asaria M, Netuveli G, Zaman H, Akhlaq A, Sheikh A (2017) Allergen immunotherapy for allergic asthma: a systematic review and meta-analysis. Allergy 72(12):1825–1848

    CAS  PubMed  Google Scholar 

  96. MacDonald KM, Kavati A, Ortiz B, Alhossan A, Lee CS, Abraham I (2019) Short- and long-term real-world effectiveness of omalizumab in severe allergic asthma: systematic review of 42 studies published 2008-2018. Expert Rev Clin Immunol 15(5):553–569

    CAS  PubMed  Google Scholar 

  97. Nishima S, Kozawa M, Milligan KL, Papadopoulos NG (2019) Omalizumab and unmet needs in severe asthma and allergic comorbidities in Japanese children. Asia Pac Allergy 9(1):e7

    PubMed Central  Google Scholar 

  98. Deschildre A, Roussel J, Drumez E, Abou-Taam R, Rames C, Le Roux P, Pouessel G, Scalbert M, Bonnel C, Mitha S, Boileau S, Mordacq C, Thumerelle C, Labreuche J, Lejeune S, Marguet C (2019) Omalizumab discontinuation in children with severe allergic asthma: an observational real-life study. Allergy 74(5):999–1003

    PubMed  Google Scholar 

  99. Fiocchi A, Artesani MC, Riccardi C, Mennini M, Pecora V, Fierro V, Calandrelli V, Dahdah L, Valluzzi RL (2019) Impact of omalizumab on food allergy in patients treated for asthma: a real-life study. J Allergy Clin Immunol Pract 7(6):1901–1909 e5

    PubMed  Google Scholar 

  100. Weir E, Paton J (2019) Mepolizumab in adolescents with severe eosinophilic asthma not eligible for omalizumab: one center’s early clinical experience. J Asthma 22:1–4

    Google Scholar 

  101. Davila Gonzalez I, Moreno Benitez F, Quirce S (2019) Benralizumab: a new approach for the treatment of severe eosinophilic asthma. J Investig Allergol Clin Immunol 29(2):84–93

    CAS  PubMed  Google Scholar 

  102. Chupp G, Lugogo NL, Kline JN, Ferguson GT, Hirsch I, Goldman M, Zangrilli JG, Trudo F (2019) Rapid onset of effect of benralizumab on morning peak expiratory flow in severe, uncontrolled asthma. Ann Allergy Asthma Immunol 122(5):478–485

    CAS  PubMed  Google Scholar 

  103. Minami D, Kayatani H, Sato K, Fujiwara K, Shibayama T (2019) Effectiveness of benralizumab for allergic and eosinophilic predominant asthma following negative initial results with omalizumab. Respirol Case Rep 7(1):e00388

    PubMed  Google Scholar 

  104. Busse WW, Bleecker ER, FitzGerald JM, Ferguson GT, Barker P, Sproule S, Olsson RF, Martin UJ, Goldman M, B.s. investigators (2019) Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial. Lancet Respir Med 7(1):46–59

    CAS  PubMed  Google Scholar 

  105. Zayed Y, Kheiri B, Banifadel M, Hicks M, Aburahma A, Hamid K, Bachuwa G, Chandran A (2018) Dupilumab safety and efficacy in uncontrolled asthma: a systematic review and meta-analysis of randomized clinical trials. J Asthma 1:1–10

    Google Scholar 

  106. Corren J, Castro M, Chanez P, Fabbri L, Joish VN, Amin N, Graham NMH, Mastey V, Abbe A, Taniou C, Mahajan P, Teper A, Pirozzi G, Eckert L (2019) Dupilumab improves symptoms, quality of life, and productivity in uncontrolled persistent asthma. Ann Allergy Asthma Immunol 122(1):41–49 e2

    CAS  Google Scholar 

  107. Rabe KF, Nair P, Brusselle G, Maspero JF, Castro M, Sher L, Zhu H, Hamilton JD, Swanson BN, Khan A, Chao J, Staudinger H, Pirozzi G, Antoni C, Amin N, Ruddy M, Akinlade B, Graham NMH, Stahl N, Yancopoulos GD, Teper A (2018) Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N Engl J Med 378(26):2475–2485

    CAS  Google Scholar 

  108. Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, Busse WW, Ford L, Sher L, FitzGerald JM, Katelaris C, Tohda Y, Zhang B, Staudinger H, Pirozzi G, Amin N, Ruddy M, Akinlade B, Khan A, Chao J, Martincova R, Graham NMH, Hamilton JD, Swanson BN, Stahl N, Yancopoulos GD, Teper A (2018) Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med 378(26):2486–2496

    CAS  PubMed  Google Scholar 

  109. Busse WW, Maspero JF, Rabe KF, Papi A, Wenzel SE, Ford LB, Pavord ID, Zhang B, Staudinger H, Pirozzi G, Amin N, Akinlade B, Eckert L, Chao J, Graham NMH, Teper A (2018) Liberty asthma QUEST: phase 3 randomized, double-blind, placebo-controlled, parallel-group study to evaluate Dupilumab efficacy/safety in patients with uncontrolled, moderate-to-severe asthma. Adv Ther 35(5):737–748

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Weinstein SF, Katial R, Jayawardena S, Pirozzi G, Staudinger H, Eckert L, Joish VN, Amin N, Maroni J, Rowe P, Graham NMH, Teper A (2018) Efficacy and safety of dupilumab in perennial allergic rhinitis and comorbid asthma. J Allergy Clin Immunol 142(1):171–177 e1

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Julia Kölle, Adriana Geiger, Susanne Mittler, Eveldina Nendel, and Sonja Trump for their assistance and continuous commitment to our scientific research.

Funding

This work was also supported by a DFG grant FI817/6-1 awarded to Susetta Finotto and by the SFB1181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susetta Finotto.

Ethics declarations

Conflict of Interest

The author declares that she has no conflict of interest.

Additional information

This article is a contribution to the special issue on Resolution of Inflammation in Chronic Diseases - Guest Editor: Markus Neurath

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finotto, S. Resolution of allergic asthma. Semin Immunopathol 41, 665–674 (2019). https://doi.org/10.1007/s00281-019-00770-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-019-00770-3

Keywords

Navigation