Skip to main content

Advertisement

Log in

Cellular and molecular pathways of structural damage in rheumatoid arthritis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Structural damage of cartilage and bone tissue is a hallmark of rheumatoid arthritis (RA). The resulting joint destruction constitutes one of the major disease consequences for patients and creates a significant burden for the society. The main cells executing bone and cartilage degradation are osteoclasts and fibroblast-like synoviocytes, respectively. The function of both cell types is heavily influenced by the immune system. In the last decades, research has identified several mediators of structural damage, ranging from infiltrating immune cells and inflammatory cytokines to autoantibodies. These factors result in an inflammatory milieu in the affected joints which leads to an increased development and function of osteoclasts and the transformation of fibroblast-like synoviocytes towards a highly migratory and destructive phenotype. In addition, repair mechanisms mediated by osteoblasts and chondrocytes are strongly impaired by the presence of pro-inflammatory cytokines. This article will review the current knowledge on the mechanisms of joint inflammation and the destruction of bone and cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van de Sande MG, Baeten DL (2016) Immunopathology of synovitis: from histology to molecular pathways. Rheumatology (Oxford) 55:599–606

    Article  Google Scholar 

  2. Zerbini CA, et al (2016) Biologic therapies and bone loss in rheumatoid arthritis. Osteoporos Int

    Google Scholar 

  3. Teitelbaum SL (2011) The osteoclast and its unique cytoskeleton. Ann N Y Acad Sci 1240:14–17

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi N et al (2014) Vitamin D endocrine system and osteoclasts. Bonekey Rep 3:495

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nakahama K (2010) Cellular communications in bone homeostasis and repair. Cell Mol Life Sci 67:4001–4009

    Article  CAS  PubMed  Google Scholar 

  6. Cohen SB et al (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58:1299–1309

    Article  CAS  PubMed  Google Scholar 

  7. Deodhar A et al (2010) Denosumab-mediated increase in hand bone mineral density associated with decreased progression of bone erosion in rheumatoid arthritis patients. Arthritis Care Res (Hoboken) 62:569–574

    Article  CAS  Google Scholar 

  8. Jarrett SJ et al (2006) Preliminary evidence for a structural benefit of the new bisphosphonate zoledronic acid in early rheumatoid arthritis. Arthritis Rheum 54:1410–1414

    Article  CAS  PubMed  Google Scholar 

  9. Takayanagi H (2005) Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med (Berl) 83:170–179

    Article  CAS  Google Scholar 

  10. Nelson CA et al (2012) RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decoy receptor. Structure 20:1971–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crotti TN et al (2015) Osteoimmunology: major and costimulatory pathway expression associated with chronic inflammatory induced bone loss. J Immunol Res 2015:281287

    Article  PubMed  PubMed Central  Google Scholar 

  12. van Tuyl LH et al (2010) Baseline RANKL:OPG ratio and markers of bone and cartilage degradation predict annual radiological progression over 11 years in rheumatoid arthritis. Ann Rheum Dis 69:1623–1628

    Article  PubMed  Google Scholar 

  13. Kong YY et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323

    Article  CAS  PubMed  Google Scholar 

  14. Akiyama T et al (2012) RANKL-RANK interaction in immune regulatory systems. World J Orthop 3:142–150

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sato K et al (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takayanagi H et al (1997) A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis. Biochem Biophys Res Commun 240:279–286

    Article  CAS  PubMed  Google Scholar 

  17. Danks L et al (2016) RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis 75:1187–1195

    Article  CAS  PubMed  Google Scholar 

  18. Hashizume M et al (2008) IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-alpha and IL-17. Rheumatology (Oxford) 47:1635–1640

    Article  CAS  Google Scholar 

  19. Yeo L et al (2011) Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann Rheum Dis 70:2022–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meednu N et al (2016) Production of RANKL by memory B cells: a link between B cells and bone erosion in rheumatoid arthritis. Arthritis Rheumatol 68:805–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Y et al (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109:3839–3848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walsh NC et al (2009) Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J Bone Miner Res 24:1572–1585

    Article  CAS  PubMed  Google Scholar 

  23. Braun T, Zwerina J (2011) Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis. Arthritis Res Ther 13:235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schett G, Gravallese E (2012) Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol 8:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yao Z et al (2006) Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem 281:11846–11855

    Article  CAS  PubMed  Google Scholar 

  26. Mori T et al (2011) IL-1beta and TNFalpha-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol 23:701–712

    Article  CAS  PubMed  Google Scholar 

  27. Wong PK et al (2006) Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum 54:158–168

    Article  CAS  PubMed  Google Scholar 

  28. Kotake S et al (1996) Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-like cell formation. J Bone Miner Res 11:88–95

    Article  CAS  PubMed  Google Scholar 

  29. Amarasekara DS et al (2015) Bone loss triggered by the cytokine network in inflammatory autoimmune diseases. J Immunol Res 2015:832127

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mateen S et al (2016) Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clin Chim Acta 455:161–171

    Article  CAS  PubMed  Google Scholar 

  31. Mertens M, Singh JA (2009) Anakinra for rheumatoid arthritis: a systematic review. J Rheumatol 36:1118–1125

    Article  CAS  PubMed  Google Scholar 

  32. Jiang Y et al (2000) A multicenter, double-blind, dose-ranging, randomized, placebo-controlled study of recombinant human interleukin-1 receptor antagonist in patients with rheumatoid arthritis: radiologic progression and correlation of Genant and Larsen scores. Arthritis Rheum 43:1001–1009

    Article  CAS  PubMed  Google Scholar 

  33. Kitami S et al (2010) IL-17A suppresses the expression of bone resorption-related proteinases and osteoclast differentiation via IL-17RA or IL-17RC receptors in RAW264.7 cells. Biochimie 92:398–404

    Article  CAS  PubMed  Google Scholar 

  34. Kotake S et al (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bax M et al (2014) The pathogenic potential of autoreactive antibodies in rheumatoid arthritis. Semin Immunopathol 36:313–325

    Article  CAS  PubMed  Google Scholar 

  36. Baka Z et al (2012) Citrullination under physiological and pathological conditions. Joint Bone Spine 79:431–436

    Article  CAS  PubMed  Google Scholar 

  37. Toes RE, Huizinga TJ (2015) Update on autoantibodies to modified proteins. Curr Opin Rheumatol 27:262–267

    Article  CAS  PubMed  Google Scholar 

  38. Amara K et al (2013) Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J Exp Med 210:445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Van Steendam K et al (2010) Citrullinated vimentin as an important antigen in immune complexes from synovial fluid of rheumatoid arthritis patients with antibodies against citrullinated proteins. Arthritis Res Ther 12:R132

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mathsson L et al (2006) Immune complexes from rheumatoid arthritis synovial fluid induce FcgammaRIIa dependent and rheumatoid factor correlated production of tumour necrosis factor-alpha by peripheral blood mononuclear cells. Arthritis Res Ther 8:R64

    Article  PubMed  PubMed Central  Google Scholar 

  41. Clavel C et al (2008) Induction of macrophage secretion of tumor necrosis factor alpha through Fcgamma receptor IIa engagement by rheumatoid arthritis-specific autoantibodies to citrullinated proteins complexed with fibrinogen. Arthritis Rheum 58:678–688

    Article  CAS  PubMed  Google Scholar 

  42. Lu MC et al (2010) Anti-citrullinated protein antibodies bind surface-expressed citrullinated Grp78 on monocyte/macrophages and stimulate tumor necrosis factor alpha production. Arthritis Rheum 62:1213–1223

    Article  CAS  PubMed  Google Scholar 

  43. Harre U et al (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122:1791–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krishnamurthy A et al (2016) Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann Rheum Dis 75:721–729

    Article  CAS  PubMed  Google Scholar 

  45. Harre U et al (2012) Moonlighting osteoclasts as undertakers of apoptotic cells. Autoimmunity 45:612–619

    Article  CAS  PubMed  Google Scholar 

  46. Seeling M et al (2013) Inflammatory monocytes and Fcgamma receptor IV on osteoclasts are critical for bone destruction during inflammatory arthritis in mice. Proc Natl Acad Sci U S A 110:10729–10734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Harre U et al (2015) Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nat Commun 6:6651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arnold JN et al (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

    Article  CAS  PubMed  Google Scholar 

  49. Bohm S et al (2012) The role of sialic acid as a modulator of the anti-inflammatory activity of IgG. Semin Immunopathol 34:443–453

    Article  PubMed  Google Scholar 

  50. Scherer HU et al (2010) Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum 62:1620–1629

    Article  CAS  PubMed  Google Scholar 

  51. Pfeifle R, et al (2016) Regulation of autoantibody activity by the IL-23-TH17 axis determines the onset of autoimmune disease. Nat Immunol

    Google Scholar 

  52. van der Woude D et al (2010) Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann Rheum Dis 69:1554–1561

    Article  PubMed  Google Scholar 

  53. Kokkonen H et al (2011) Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide precede the development of rheumatoid arthritis. Arthritis Res Ther 13:R13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suwannalai P et al (2012) Avidity maturation of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum 64:1323–1328

    Article  CAS  PubMed  Google Scholar 

  55. Rombouts Y et al (2015) Anti-citrullinated protein antibodies acquire a pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann Rheum Dis 74:234–241

    Article  CAS  PubMed  Google Scholar 

  56. Shi J et al (2011) Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc Natl Acad Sci U S A 108:17372–17377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kleyer A et al (2014) Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis 73:854–860

    Article  PubMed  Google Scholar 

  58. Walsh NC, Gravallese EM (2010) Bone remodeling in rheumatic disease: a question of balance. Immunol Rev 233:301–312

    Article  CAS  PubMed  Google Scholar 

  59. Baum R, Gravallese EM (2016) Bone as a target organ in rheumatic disease: impact on osteoclasts and osteoblasts. Clin Rev Allergy Immunol 51:1–15

    Article  PubMed  Google Scholar 

  60. Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355

    Article  CAS  PubMed  Google Scholar 

  61. Gilbert L et al (2002) Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem 277:2695–2701

    Article  CAS  PubMed  Google Scholar 

  62. Kaneki H et al (2006) Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem 281:4326–4333

    Article  CAS  PubMed  Google Scholar 

  63. Yeremenko N et al (2015) Tumor necrosis factor and interleukin-6 differentially regulate Dkk-1 in the inflamed arthritic joint. Arthritis Rheumatol 67:2071–2075

    Article  CAS  PubMed  Google Scholar 

  64. Wang SY et al (2011) Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol 38:821–827

    Article  CAS  PubMed  Google Scholar 

  65. Glass DA 2nd et al (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764

    Article  CAS  PubMed  Google Scholar 

  66. Diarra D et al (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163

    Article  CAS  PubMed  Google Scholar 

  67. de Rooy DP et al (2013) Genetic studies on components of the Wnt signalling pathway and the severity of joint destruction in rheumatoid arthritis. Ann Rheum Dis 72:769–775

    Article  PubMed  Google Scholar 

  68. Matzelle MM et al (2016) Inflammation in arthritis induces expression of BMP3, an inhibitor of bone formation. Scand J Rheumatol 45:379–383

    Article  CAS  PubMed  Google Scholar 

  69. Stashenko P et al (1987) Interleukin-1 beta is a potent inhibitor of bone formation in vitro. J Bone Miner Res 2:559–565

    Article  CAS  PubMed  Google Scholar 

  70. Shaw AT et al (2016) IL-17A deficiency promotes periosteal bone formation in a model of inflammatory arthritis. Arthritis Res Ther 18:104

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bhattaram P, Chandrasekharan U (2016) The joint synovium: a critical determinant of articular cartilage fate in inflammatory joint diseases. Semin Cell Dev Biol

    Google Scholar 

  72. Schonfeld C et al (2015) Fibroblasts as pathogenic cells in rheumatic inflammation. Z Rheumatol 74:33–38

    Article  CAS  PubMed  Google Scholar 

  73. Neumann E et al (2010) Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med 16:458–468

    Article  CAS  PubMed  Google Scholar 

  74. Linder S (2009) Invadosomes at a glance. J Cell Sci 122:3009–3013

    Article  CAS  PubMed  Google Scholar 

  75. Kim KW et al (2015) Th17 cytokines regulate osteoclastogenesis in rheumatoid arthritis. Am J Pathol 185:3011–3024

    Article  CAS  PubMed  Google Scholar 

  76. Lefevre S et al (2009) Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med 15:1414–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Klein K et al (2012) Epigenetic contributions in the development of rheumatoid arthritis. Arthritis Res Ther 14:227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Karouzakis E et al (2009) DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 60:3613–3622

    Article  CAS  PubMed  Google Scholar 

  79. Diermeier S et al (2014) TNFalpha signalling primes chromatin for NF-kappaB binding and induces rapid and widespread nucleosome repositioning. Genome Biol 15:536

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sherwood JC et al (2014) Cellular and molecular mechanisms of cartilage damage and repair. Drug Discov Today 19:1172–1177

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Schett.

Additional information

This article is a contribution to the special issue on Immunopathology of Rheumatoid Arthritis - Guest Editors: Cem Gabay and Paul Hasler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harre, U., Schett, G. Cellular and molecular pathways of structural damage in rheumatoid arthritis. Semin Immunopathol 39, 355–363 (2017). https://doi.org/10.1007/s00281-017-0634-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-017-0634-0

Keywords

Navigation