Skip to main content

Advertisement

Log in

The role of sialic acid as a modulator of the anti-inflammatory activity of IgG

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Immunoglobulin G (IgG) molecules can have two completely opposing activities. They can be very potent pro-inflammatory mediators on the one hand, directing the effector functions of the innate immune system towards infected cells, tumor cells or healthy tissues in the case of autoimmune diseases. On the other hand, a mixture of IgG molecules purified from the blood of ten thousands of healthy donors is used as an anti-inflammatory treatment for many autoimmune diseases since several decades. It has become evident only recently that certain residues in the sugar moiety attached to the IgG constant fragment can dramatically alter the pro- and anti-inflammatory activities of IgG. This review will focus on sialic acid residues as a modulator of the anti-inflammatory activity and provide an overview of situations where serum IgG glycosylation and sialylation is altered and which molecular and cellular pathways may be involved in this immunomodulatory pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nimmerjahn F, Ravetch JV (2010) Antibody-mediated modulation of immune responses. Immunol Rev 236:265–275

    Article  PubMed  CAS  Google Scholar 

  2. Takai T (2002) Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2(8):580–592

    PubMed  CAS  Google Scholar 

  3. Hogarth PM (2002) Fc receptors are major mediators of antibody based inflammation in autoimmunity. Curr Opin Immunol 14(6):798–802

    Article  PubMed  CAS  Google Scholar 

  4. Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8(1):34–47. doi:10.1038/nri2206

    Article  PubMed  CAS  Google Scholar 

  5. Ravetch JV, Clynes RA (1998) Divergent roles for Fc receptors and complement in vivo. Annu Rev Immunol 16:421–432

    Article  PubMed  CAS  Google Scholar 

  6. Wilson NS, Yang B, Yang A, Loeser S, Marsters S, Lawrence D, Li Y, Pitti R, Totpal K, Yee S, Ross S, Vernes JM, Lu Y, Adams C, Offringa R, Kelley B, Hymowitz S, Daniel D, Meng G, Ashkenazi A (2011) An Fcgamma receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 19(1):101–113. doi:10.1016/j.ccr.2010.11.012

    Article  PubMed  CAS  Google Scholar 

  7. Winterroth L, Rivera J, Nakouzi AS, Dadachova E, Casadevall A (2010) Neutralizing monoclonal antibody to edema toxin and its effect on murine anthrax. Infect Immun 78(6):2890–2898. doi:10.1128/IAI.01101-09

    Article  PubMed  CAS  Google Scholar 

  8. Hessell AJ, Hangartner L, Hunter M, Havenith CE, Beurskens FJ, Bakker JM, Lanigan CM, Landucci G, Forthal DN, Parren PW, Marx PA, Burton DR (2007) Fc receptor but not complement binding is important in antibody protection against HIV. Nature 449(7158):101–104. doi:10.1038/nature06106

    Article  PubMed  CAS  Google Scholar 

  9. Nimmerjahn F, Ravetch JV (2008) Analyzing antibody-Fc-receptor interactions. Methods Mol Biol 415:151–162. doi:10.1007/978-1-59745-570-1_9

    Article  PubMed  CAS  Google Scholar 

  10. Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290(5489):84–89

    Article  PubMed  CAS  Google Scholar 

  11. Clynes R, Maizes JS, Guinamard R, Ono M, Takai T, Ravetch JV (1999) Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J Exp Med 189(1):179–185

    Article  PubMed  CAS  Google Scholar 

  12. Kaneko Y, Nimmerjahn F, Madaio MP, Ravetch JV (2006) Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J Exp Med 203(3):789–797, Epub 2006 Mar 2006

    Article  PubMed  CAS  Google Scholar 

  13. Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512. doi:10.1126/science.1118948

    Article  PubMed  CAS  Google Scholar 

  14. Smith KG, Clatworthy MR (2010) FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 10(5):328–343. doi:10.1038/nri2762

    Article  PubMed  CAS  Google Scholar 

  15. Bolland S, Ravetch JV (2000) Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 13(2):277–285

    Article  PubMed  CAS  Google Scholar 

  16. Nimmerjahn F, Ravetch JV (2008) Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 26:513–533. doi:10.1146/annurev.immunol.26.021607.090232

    Article  PubMed  CAS  Google Scholar 

  17. Durandy A, Kaveri SV, Kuijpers TW, Basta M, Miescher S, Ravetch JV, Rieben R (2009) Intravenous immunoglobulins—understanding properties and mechanisms. Clin Exp Immunol 158(Suppl 1):2–13. doi:10.1111/j.1365-2249.2009.04022.x

    Article  PubMed  CAS  Google Scholar 

  18. Kaneko Y, Nimmerjahn F, Ravetch JV (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313(5787):670–673

    Article  PubMed  CAS  Google Scholar 

  19. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox JA, Presta LG (2001) High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 276(9):6591–6604

    Article  PubMed  CAS  Google Scholar 

  20. Walker MR, Lund J, Thompson KM, Jefferis R (1989) Aglycosylation of human IgG1 and IgG3 monoclonal antibodies can eliminate recognition by human cells expressing Fc gamma RI and/or Fc gamma RII receptors. Biochem J 259(2):347–353

    PubMed  CAS  Google Scholar 

  21. Lund J, Tanaka T, Takahashi N, Sarmay G, Arata Y, Jefferis R (1990) A protein structural change in aglycosylated IgG3 correlates with loss of huFc gamma R1 and huFc gamma R111 binding and/or activation. Mol Immunol 27(11):1145–1153

    Article  PubMed  CAS  Google Scholar 

  22. Tao MH, Morrison SL (1989) Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J Immunol 143(8):2595–2601

    PubMed  CAS  Google Scholar 

  23. Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P (2003) Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325(5):979–989

    Article  PubMed  CAS  Google Scholar 

  24. Mimura Y, Church S, Ghirlando R, Ashton PR, Dong S, Goodall M, Lund J, Jefferis R (2000) The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol Immunol 37(12–13):697–706

    Article  PubMed  CAS  Google Scholar 

  25. Ghetie V, Ward ES (2000) Multiple roles for the major histocompatibility complex class I- related receptor FcRn. Annu Rev Immunol 18:739–766

    Article  PubMed  CAS  Google Scholar 

  26. Mori K, Iida S, Yamane-Ohnuki N, Kanda Y, Kuni-Kamochi R, Nakano R, Imai-Nishiya H, Okazaki A, Shinkawa T, Natsume A, Niwa R, Shitara K, Satoh M (2007) Non-fucosylated therapeutic antibodies: the next generation of therapeutic antibodies. Cytotechnology 55(2–3):109–114. doi:10.1007/s10616-007-9103-2

    Article  PubMed  CAS  Google Scholar 

  27. Jefferis R (2007) Antibody therapeutics: isotype and glycoform selection. Expert Opin Biol Ther 7(9):1401–1413. doi:10.1517/14712598.7.9.1401

    Article  PubMed  CAS  Google Scholar 

  28. Natsume A, Niwa R, Satoh M (2009) Improving effector functions of antibodies for cancer treatment: Enhancing ADCC and CDC. Drug Des Devel Ther 3:7–16

    PubMed  CAS  Google Scholar 

  29. Crow AR, Brinc D, Lazarus AH (2009) New insight into the mechanism of action of IVIg: the role of dendritic cells. J Thromb Haemost 7(Suppl 1):245–248

    Article  PubMed  CAS  Google Scholar 

  30. Imbach P, Lazarus AH, Kuhne T (2010) Intravenous immunoglobulins induce potentially synergistic immunomodulations in autoimmune disorders. Vox Sang 98(3 Pt 2):385–394. doi:10.1111/j.1423-0410.2009.01264.x

    Article  PubMed  CAS  Google Scholar 

  31. Negi VS, Elluru S, Siberil S, Graff-Dubois S, Mouthon L, Kazatchkine MD, Lacroix-Desmazes S, Bayry J, Kaveri SV (2007) Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol 27(3):233–245

    Article  PubMed  CAS  Google Scholar 

  32. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

    Article  PubMed  CAS  Google Scholar 

  33. Kobata A (2008) The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim Biophys Acta 1780(3):472–478. doi:10.1016/j.bbagen.2007.06.012

    Article  PubMed  CAS  Google Scholar 

  34. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291(5512):2370–2376

    Article  PubMed  CAS  Google Scholar 

  35. Raju TS (2008) Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 20(4):471–478. doi:10.1016/j.coi.2008.06.007

    Article  PubMed  CAS  Google Scholar 

  36. Sutton BJ, Phillips DC (1983) The three-dimensional structure of the carbohydrate within the Fc fragment of immunoglobulin G. Biochem Soc Trans 11(2):130–132

    CAS  Google Scholar 

  37. Saphire EO, Stanfield RL, Crispin MD, Parren PW, Rudd PM, Dwek RA, Burton DR, Wilson IA (2002) Contrasting IgG structures reveal extreme asymmetry and flexibility. J Mol Biol 319(1):9–18. doi:10.1016/S0022-2836(02)00244-9

    Article  PubMed  CAS  Google Scholar 

  38. Masuda K, Yamaguchi Y, Kato K, Takahashi N, Shimada I, Arata Y (2000) Pairing of oligosaccharides in the Fc region of immunoglobulin G. FEBS Lett 473(3):349–357

    Article  PubMed  CAS  Google Scholar 

  39. Holland M, Yagi H, Takahashi N, Kato K, Savage CO, Goodall DM, Jefferis R (2006) Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim Biophys Acta 1760(4):669–677. doi:10.1016/j.bbagen.2005.11.021

    Article  PubMed  CAS  Google Scholar 

  40. Wormald MR, Rudd PM, Harvey DJ, Chang SC, Scragg IG, Dwek RA (1997) Variations in oligosaccharide-protein interactions in immunoglobulin G determine the site-specific glycosylation profiles and modulate the dynamic motion of the Fc oligosaccharides. Biochemistry 36(6):1370–1380. doi:10.1021/bi9621472

    Article  PubMed  CAS  Google Scholar 

  41. Stadlmann J, Pabst M, Altmann F (2010) Analytical and functional aspects of antibody sialylation. J Clin Immunol. doi:10.1007/s10875-010-9409-2

  42. Lund J, Takahashi N, Pound JD, Goodall M, Jefferis R (1996) Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human Fc gamma receptor I and influence the synthesis of its oligosaccharide chains. J Immunol 157(11):4963–4969

    PubMed  CAS  Google Scholar 

  43. Mimura Y, Ashton PR, Takahashi N, Harvey DJ, Jefferis R (2007) Contrasting glycosylation profiles between Fab and Fc of a human IgG protein studied by electrospray ionization mass spectrometry. J Immunol Methods 326(1–2):116–126. doi:10.1016/j.jim.2007.07.014

    Article  PubMed  CAS  Google Scholar 

  44. Sondermann P, Huber R, Oosthuizen V, Jacob U (2000) The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc gammaRIII complex. Nature 406(6793):267–273

    Article  PubMed  CAS  Google Scholar 

  45. Radaev S, Motyka S, Fridman WH, Sautes-Fridman C, Sun PD (2001) The structure of a human type III Fcgamma receptor in complex with Fc. J Biol Chem 276(19):16469–16477. doi:10.1074/jbc.M100350200

    Article  PubMed  CAS  Google Scholar 

  46. Deisenhofer J (1981) Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry 20(9):2361–2370

    Article  PubMed  CAS  Google Scholar 

  47. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K et al (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316(6027):452–457

    Article  PubMed  CAS  Google Scholar 

  48. Sumar N, Isenberg DA, Bodman KB, Soltys A, Young A, Leak AM, Round J, Hay FC, Roitt IM (1991) Reduction in IgG galactose in juvenile and adult onset rheumatoid arthritis measured by a lectin binding method and its relation to rheumatoid factor. Ann Rheum Dis 50(9):607–610

    Article  PubMed  CAS  Google Scholar 

  49. Parekh RB, Roitt IM, Isenberg DA, Dwek RA, Ansell BM, Rademacher TW (1988) Galactosylation of IgG associated oligosaccharides: reduction in patients with adult and juvenile onset rheumatoid arthritis and relation to disease activity. Lancet 1(8592):966–969

    Article  PubMed  CAS  Google Scholar 

  50. Young A, Sumar N, Bodman K, Goyal S, Sinclair H, Roitt I, Isenberg D (1991) Agalactosyl IgG: an aid to differential diagnosis in early synovitis. Arthritis Rheum 34(11):1425–1429

    Article  PubMed  CAS  Google Scholar 

  51. Lu MC, Hsieh SC, Lai NS, Li KJ, Wu CH, Yu CL (2007) Comparison of anti-agalactosyl IgG antibodies, rheumatoid factors, and anti-cyclic citrullinated peptide antibodies in the differential diagnosis of rheumatoid arthritis and its mimics. Clin Exp Rheumatol 25(5):716–721.

    PubMed  Google Scholar 

  52. Scherer HU, van der Woude D, Ioan-Facsinay A, el Bannoudi H, Trouw LA, Wang J, Haupl T, Burmester GR, Deelder AM, Huizinga TW, Wuhrer M, Toes RE (2010) Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum 62(6):1620–1629. doi:10.1002/art.27414

    Article  PubMed  CAS  Google Scholar 

  53. Leirisalo-Repo M, Hernandez-Munoz HE, Rook GA (1999) Agalactosyl IgG is elevated in patients with active spondyloarthropathy. Rheumatol Int 18(5–6):171–176

    Article  PubMed  CAS  Google Scholar 

  54. Tomana M, Schrohenloher RE, Koopman WJ, Alarcon GS, Paul WA (1988) Abnormal glycosylation of serum IgG from patients with chronic inflammatory diseases. Arthritis Rheum 31(3):333–338

    Article  PubMed  CAS  Google Scholar 

  55. Keusch J, Levy Y, Shoenfeld Y, Youinou P (1996) Analysis of different glycosylation states in IgG subclasses. Clin Chim Acta 252(2):147–158

    Article  PubMed  CAS  Google Scholar 

  56. Dube R, Rook GA, Steele J, Brealey R, Dwek R, Rademacher T, Lennard-Jones J (1990) Agalactosyl IgG in inflammatory bowel disease: correlation with C-reactive protein. Gut 31(4):431–434

    Article  PubMed  CAS  Google Scholar 

  57. Holland M, Takada K, Okumoto T, Takahashi N, Kato K, Adu D, Ben-Smith A, Harper L, Savage CO, Jefferis R (2002) Hypogalactosylation of serum IgG in patients with ANCA-associated systemic vasculitis. Clin Exp Immunol 129(1):183–190

    Article  PubMed  CAS  Google Scholar 

  58. van de Geijn FE, Wuhrer M, Selman MH, Willemsen SP, de Man YA, Deelder AM, Hazes JM, Dolhain RJ (2009) Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res Ther 11(6):R193

    Article  PubMed  CAS  Google Scholar 

  59. Rook GA, Steele J, Brealey R, Whyte A, Isenberg D, Sumar N, Nelson JL, Bodman KB, Young A, Roitt IM et al (1991) Changes in IgG glycoform levels are associated with remission of arthritis during pregnancy. J Autoimmun 4(5):779–794

    Article  PubMed  CAS  Google Scholar 

  60. Pasek M, Duk M, Podbielska M, Sokolik R, Szechinski J, Lisowska E, Krotkiewski H (2006) Galactosylation of IgG from rheumatoid arthritis (RA) patients–changes during therapy. Glycoconj J 23(7–8):463–471. doi:10.1007/s10719-006-5409-0

    Article  PubMed  CAS  Google Scholar 

  61. Croce A, Firuzi O, Altieri F, Eufemi M, Agostino R, Priori R, Bombardieri M, Alessandri C, Valesini G, Saso L (2007) Effect of infliximab on the glycosylation of IgG of patients with rheumatoid arthritis. J Clin Lab Anal 21(5):303–314. doi:10.1002/jcla.20191

    Article  PubMed  CAS  Google Scholar 

  62. Wang J, Balog CI, Stavenhagen K, Koeleman CA, Scherer HU, Selman MH, Deelder AM, Huizinga TW, Toes RE, Wuhrer M (2011) Fc-glycosylation of IgG1 is modulated by B-cell stimuli. Mol Cell Proteomics 10(5):M110 004655. doi:10.1074/mcp.M110.004655

    PubMed  Google Scholar 

  63. Bond A, Cooke A, Hay FC (1990) Glycosylation of IgG, immune complexes and IgG subclasses in the MRL-lpr/lpr mouse model of rheumatoid arthritis. Eur J Immunol 20(10):2229–2233

    Article  PubMed  CAS  Google Scholar 

  64. Kuroda Y, Nakata M, Hirose S, Shirai T, Iwamoto M, Izui S, Kojima N, Mizuochi T (2001) Abnormal IgG galactosylation in MRL-lpr/lpr mice: pathogenic role in the development of arthritis. Pathol Int 51(12):909–915

    Article  PubMed  CAS  Google Scholar 

  65. Kuroda Y, Nakata M, Nose M, Kojima N, Mizuochi T (2001) Abnormal IgG galactosylation and arthritis in MRL-Fas(lpr) or MRL-FasL(gld) mice are under the control of the MRL genetic background. FEBS Lett 507(2):210–214

    Article  PubMed  CAS  Google Scholar 

  66. Rook G, Thompson S, Buckley M, Elson C, Brealey R, Lambert C, White T, Rademacher T (1991) The role of oil and agalactosyl IgG in the induction of arthritis in rodent models. Eur J Immunol 21(4):1027–1032. doi:10.1002/eji.1830210425

    Article  PubMed  CAS  Google Scholar 

  67. Mehta AS, Long RE, Comunale MA, Wang M, Rodemich L, Krakover J, Philip R, Marrero JA, Dwek RA, Block TM (2008) Increased levels of galactose-deficient anti-Gal immunoglobulin G in the sera of hepatitis C virus-infected individuals with fibrosis and cirrhosis. J Virol 82(3):1259–1270. doi:10.1128/JVI.01600-07

    Article  PubMed  CAS  Google Scholar 

  68. Parekh R, Isenberg D, Rook G, Roitt I, Dwek R, Rademacher T (1989) A comparative analysis of disease-associated changes in the galactosylation of serum IgG. J Autoimmun 2(2):101–114

    Article  PubMed  CAS  Google Scholar 

  69. Wuhrer M, Porcelijn L, Kapur R, Koeleman CA, Deelder A, de Haas M, Vidarsson G (2009) Regulated glycosylation patterns of IgG during alloimmune responses against human platelet antigens. J Proteome Res 8(2):450–456. doi:10.1021/pr800651j

    Article  PubMed  CAS  Google Scholar 

  70. Omtvedt LA, Royle L, Husby G, Sletten K, Radcliffe CM, Harvey DJ, Dwek RA, Rudd PM (2006) Glycan analysis of monoclonal antibodies secreted in deposition disorders indicates that subsets of plasma cells differentially process IgG glycans. Arthritis Rheum 54(11):3433–3440. doi:10.1002/art.22171

    Article  PubMed  CAS  Google Scholar 

  71. Axford JS (1988) Decreased B-cell galactosyltransferase activity in rheumatoid arthritis. Br J Rheumatol 27(Suppl 2):170

    PubMed  Google Scholar 

  72. Parekh R, Roitt I, Isenberg D, Dwek R, Rademacher T (1988) Age-related galactosylation of the N-linked oligosaccharides of human serum IgG. J Exp Med 167(5):1731–1736

    Article  PubMed  CAS  Google Scholar 

  73. Yamada E, Tsukamoto Y, Sasaki R, Yagyu K, Takahashi N (1997) Structural changes of immunoglobulin G oligosaccharides with age in healthy human serum. Glycoconj J 14(3):401–405

    Article  PubMed  CAS  Google Scholar 

  74. Shikata K, Yasuda T, Takeuchi F, Konishi T, Nakata M, Mizuochi T (1998) Structural changes in the oligosaccharide moiety of human IgG with aging. Glycoconj J 15(7):683–689

    Article  PubMed  CAS  Google Scholar 

  75. Ruhaak LR, Uh HW, Beekman M, Koeleman CA, Hokke CH, Westendorp RG, Wuhrer M, Houwing-Duistermaat JJ, Slagboom PE, Deelder AM (2010) Decreased levels of bisecting GlcNAc glycoforms of IgG are associated with human longevity. PLoS One 5(9):e12566. doi:10.1371/journal.pone.0012566

    Article  PubMed  CAS  Google Scholar 

  76. Rademacher TW, Williams P, Dwek RA (1994) Agalactosyl glycoforms of IgG autoantibodies are pathogenic. Proc Natl Acad Sci USA 91(13):6123–6127

    Article  PubMed  CAS  Google Scholar 

  77. Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1(3):237–243

    Article  PubMed  CAS  Google Scholar 

  78. Hadley AG, Zupanska B, Kumpel BM, Pilkington C, Griffiths HL, Leader KA, Jones J, Booker DJ, Stamps R, Sokol RJ (1995) The glycosylation of red cell autoantibodies affects their functional activity in vitro. Br J Haematol 91(3):587–594

    Article  PubMed  CAS  Google Scholar 

  79. Kumpel BM, Rademacher TW, Rook GA, Williams PJ, Wilson IB (1994) Galactosylation of human IgG monoclonal anti-D produced by EBV-transformed B-lymphoblastoid cell lines is dependent on culture method and affects Fc receptor-mediated functional activity. Hum Antibodies Hybridomas 5(3–4):143–151

    PubMed  CAS  Google Scholar 

  80. Kumpel BM, Wang Y, Griffiths HL, Hadley AG, Rook GA (1995) The biological activity of human monoclonal IgG anti-D is reduced by beta-galactosidase treatment. Hum Antibodies Hybridomas 6(3):82–88

    PubMed  CAS  Google Scholar 

  81. Boyd PN, Lines AC, Patel AK (1995) The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol Immunol 32(17–18):1311–1318

    Article  PubMed  CAS  Google Scholar 

  82. Nimmerjahn F, Anthony RM, Ravetch JV (2007) Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc Natl Acad Sci USA 104(20):8433–8437. doi:10.1073/pnas.0702936104

    Article  PubMed  CAS  Google Scholar 

  83. Ji H, Ohmura K, Mahmood U, Lee DM, Hofhuis FM, Boackle SA, Takahashi K, Holers VM, Walport M, Gerard C, Ezekowitz A, Carroll MC, Brenner M, Weissleder R, Verbeek JS, Duchatelle V, Degott C, Benoist C, Mathis D (2002) Arthritis critically dependent on innate immune system players. Immunity 16(2):157–168

    Article  PubMed  CAS  Google Scholar 

  84. Carroll MC (1998) The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 16:545–568

    Article  PubMed  CAS  Google Scholar 

  85. Ghirlando R, Lund J, Goodall M, Jefferis R (1999) Glycosylation of human IgG-Fc: influences on structure revealed by differential scanning micro-calorimetry. Immunol Lett 68(1):47–52

    Article  PubMed  CAS  Google Scholar 

  86. Mimura Y, Sondermann P, Ghirlando R, Lund J, Young SP, Goodall M, Jefferis R (2001) Role of oligosaccharide residues of IgG1-Fc in Fc gamma RIIb binding. J Biol Chem 276(49):45539–45547. doi:10.1074/jbc.M107478200

    Article  PubMed  CAS  Google Scholar 

  87. van de Geijn FE, de Man YA, Wuhrer M, Willemsen SP, Deelder AM, Hazes JM, Dolhain RJ (2011) Mannose-binding lectin does not explain the course and outcome of pregnancy in rheumatoid arthritis. Arthritis Res Ther 13(1):R10. doi:10.1186/ar3231

    Article  PubMed  Google Scholar 

  88. Garred P, Madsen HO, Marquart H, Hansen TM, Sorensen SF, Petersen J, Volck B, Svejgaard A, Graudal NA, Rudd PM, Dwek RA, Sim RB, Andersen V (2000) Two edged role of mannose binding lectin in rheumatoid arthritis: a cross sectional study. J Rheumatol 27(1):26–34

    PubMed  CAS  Google Scholar 

  89. Graudal NA, Madsen HO, Tarp U, Svejgaard A, Jurik G, Graudal HK, Garred P (2000) The association of variant mannose-binding lectin genotypes with radiographic outcome in rheumatoid arthritis. Arthritis Rheum 43(3):515–521. doi:10.1002/1529-0131(200003)43:3<515::AID-ANR6>3.0.CO;2-T

    Article  PubMed  CAS  Google Scholar 

  90. Guhr T, Bloem J, Derksen NI, Wuhrer M, Koenderman AH, Aalberse RC, Rispens T (2011) Enrichment of sialylated IgG by lectin fractionation does not enhance the efficacy of immunoglobulin G in a murine model of immune thrombocytopenia. PLoS One 6(6):e21246. doi:10.1371/journal.pone.0021246

    Article  PubMed  CAS  Google Scholar 

  91. Stadlmann J, Weber A, Pabst M, Anderle H, Kunert R, Ehrlich HJ, Peter Schwarz H, Altmann F (2009) A close look at human IgG sialylation and subclass distribution after lectin fractionation. Proteomics 9(17):4143–4153

    Article  PubMed  CAS  Google Scholar 

  92. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320(5874):373–376

    Article  PubMed  CAS  Google Scholar 

  93. Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS (2007) Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44(7):1524–1534

    Article  PubMed  CAS  Google Scholar 

  94. Samuelsson A, Towers TL, Ravetch JV (2001) Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291(5503):484–486

    Article  PubMed  CAS  Google Scholar 

  95. Bruhns P, Samuelsson A, Pollard JW, Ravetch JV (2003) Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 18(4):573–581

    Article  PubMed  CAS  Google Scholar 

  96. Crow AR, Song S, Freedman J, Helgason CD, Humphries RK, Siminovitch KA, Lazarus AH (2003) IVIg-mediated amelioration of murine ITP via FcgammaRIIB is independent of SHIP1, SHP-1, and Btk activity. Blood 102(2):558–560

    Article  PubMed  CAS  Google Scholar 

  97. Anthony RM, Kobayashi T, Wermeling F, Ravetch JV (2011) Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature. doi:10.1038/nature10134

  98. Tackenberg B, Jelcic I, Baerenwaldt A, Oertel WH, Sommer N, Nimmerjahn F, Lunemann JD (2009) Impaired inhibitory Fcgamma receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc Natl Acad Sci USA 106(12):4788–4792. doi:10.1073/pnas.0807319106

    Article  PubMed  CAS  Google Scholar 

  99. Anthony RM, Wermeling F, Karlsson MC, Ravetch JV (2008) Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci USA 105(50):19571–19578

    Article  PubMed  CAS  Google Scholar 

  100. Granelli-Piperno A, Pritsker A, Pack M, Shimeliovich I, Arrighi JF, Park CG, Trumpfheller C, Piguet V, Moran TM, Steinman RM (2005) Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J Immunol 175(7):4265–4273

    PubMed  CAS  Google Scholar 

  101. Soilleux EJ, Morris LS, Leslie G, Chehimi J, Luo Q, Levroney E, Trowsdale J, Montaner LJ, Doms RW, Weissman D, Coleman N, Lee B (2002) Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 71(3):445–457

    PubMed  CAS  Google Scholar 

  102. Siragam V, Crow AR, Brinc D, Song S, Freedman J, Lazarus AH (2006) Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells. Nat Med 12(6):688–692, Epub 2006 May 2021

    Article  PubMed  CAS  Google Scholar 

  103. Nimmerjahn F, Ravetch JV (2006) Fcgamma receptors: old friends and new family members. Immunity 24(1):19–28

    Article  PubMed  CAS  Google Scholar 

  104. Pricop L, Redecha P, Teillaud JL, Frey J, Fridman WH, Sautes-Fridman C, Salmon JE (2001) Differential modulation of stimulatory and inhibitory Fc gamma receptors on human monocytes by Th1 and Th2 cytokines. J Immunol 166(1):531–537

    PubMed  CAS  Google Scholar 

  105. Crow AR, Song S, Semple JW, Freedman J, Lazarus AH (2007) A role for IL-1 receptor antagonist or other cytokines in the acute therapeutic effects of IVIg? Blood 109(1):155–158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the German Research Foundation (SFB 643, FOR 832, SPP 1468, GK 1660), the Bavarian Genome Research Network and the Paul-Ehrlich and Ludwig-Darmstädter Foundation. We apologize to all our colleagues whose important work could not be cited directly in this manuscript. These references can be found in the excellent review articles cited in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk Nimmerjahn.

Additional information

This article is published as part of the Special Issue on Glycosylation and Immunity [34:3].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, S., Schwab, I., Lux, A. et al. The role of sialic acid as a modulator of the anti-inflammatory activity of IgG. Semin Immunopathol 34, 443–453 (2012). https://doi.org/10.1007/s00281-012-0308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-012-0308-x

Keywords

Navigation