Skip to main content

Advertisement

Log in

ASP9853, an inhibitor of inducible nitric oxide synthase dimerization, in combination with docetaxel: preclinical investigation and a Phase I study in advanced solid tumors

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

ASP9853 is an inhibitor of inducible nitric oxide (NO) synthase (iNOS) dimerization, which results in decreased NO production. Here, we report preclinical pharmacology of ASP9853 and the impact of ASP9853 in combination with a taxane on tumor volume in vivo. In addition, a Phase I open-label study of ASP9853 plus docetaxel was conducted to assess this combination in patients with advanced solid tumors.

Methods

The preclinical efficacy of ASP9853 in combination with a taxane was studied in tumor-bearing mice. In the clinic, patients with solid tumors that had progressed or failed to respond to previous therapies were treated with once–daily ASP9853 in combination with docetaxel once every 3 weeks to assess safety and tolerability and to determine the maximum tolerated dose (MTD) and the recommended Phase II dose (RP2D) of the combination.

Results

ASP9853 in combination with docetaxel showed greater tumor growth inhibition than docetaxel alone against non-small lung cancer xenografts. Twenty patients were treated with ASP9853 and docetaxel. Five patients experienced neutropenic dose-limiting toxicities. Owing to overall toxicity that limited further dose escalation, the ASP9853 concentrations predicted for efficacy, based on the preclinical data, were not achieved. Due to toxicity and lack of clear efficacy, the study was terminated without determination of MTD or RP2D.

Conclusions

Inhibition of iNOS by ASP9853 in combination with docetaxel was not tolerable and resulted in the possible potentiation of neutropenia. Manipulation of the iNOS pathway, with or without chemotherapy, appears to be more complicated than initially expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sessa WC (2009) Molecular control of blood flow and angiogenesis: role of nitric oxide. J Thromb Haemost 7(Suppl 1):35–37

    Article  CAS  PubMed  Google Scholar 

  2. Rosselli M, Keller PJ, Dubey RK (1998) Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update 4:3–24

    Article  CAS  PubMed  Google Scholar 

  3. Wink DA, Hines HB, Cheng RY, Switzer CH, Flores-Santana W, Vitek MP, Ridnour LA, Colton CA (2011) Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 89:873–891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Thomas DD, Miranda KM, Colton CA, Citrin D, Espey MG, Wink DA (2003) Heme proteins and nitric oxide (NO): the neglected, eloquent chemistry in no redox signaling and regulation. Antioxid Redox Signal 5:307–317

    Article  CAS  PubMed  Google Scholar 

  5. Landar A, Darley-Usmar VM (2003) Nitric oxide and cell signaling: modulation of redox tone and protein modification. Amino Acids 25:313–321

    Article  CAS  PubMed  Google Scholar 

  6. Gow AJ, Farkouh CR, Munson DA, Posencheg MA, Ischiropoulos H (2004) Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung Cell Mol Physiol 287:L262–L268

    Article  CAS  PubMed  Google Scholar 

  7. Andrew PJ, Mayer B (1999) Enzymatic function of nitric oxide synthases. Cardiovasc Res 43:521–531

    Article  CAS  PubMed  Google Scholar 

  8. Predonzani A, Cali B, Agnellini AH, Molon B (2015) Spotlights on immunological effects of reactive nitrogen species: when inflammation says nitric oxide. World J Exp Med 5:64–76

    Article  PubMed Central  PubMed  Google Scholar 

  9. Janakiram NB, Rao CV (2012) Inos-selective inhibitors for cancer prevention: promise and progress. Future Med Chem 4:2193–2204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Zamora R, Vodovotz Y, Billiar TR (2000) Inducible nitric oxide synthase and inflammatory diseases. Mol Med 6:347–373

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Lechner M, Lirk P, Rieder J (2005) Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol 15:277–289

    Article  CAS  PubMed  Google Scholar 

  12. Hibbs J, Taintor R, Vavrin Z, Granger D, Drapier J-C, Amber I, Lancaster J (1990) Synthesis of nitric oxide from a terminal guanidino nitrogen atom of l-arginine: a molecular mechanism regulating cellular proliferation that targets in intracellular iron. In: Moncada S, Higgs E (eds) Nitric oxide from l-arginine: a bioregulatory system. Elsevier, Amsterdam, pp 189–223

    Google Scholar 

  13. Albina JE, Reichner JS (1998) Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis. Cancer Metastasis Rev 17:39–53

    Article  CAS  PubMed  Google Scholar 

  14. Jenkins DC, Charles IG, Thomsen LL, Moss DW, Holmes LS, Baylis SA, Rhodes P, Westmore K, Emson PC, Moncada S (1995) Roles of nitric oxide in tumor growth. Proc Natl Acad Sci USA 92:4392–4396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Klotz T, Bloch W, Volberg C, Engelmann U, Addicks K (1998) Selective expression of inducible nitric oxide synthase in human prostate carcinoma. Cancer 82:1897–1903

    Article  CAS  PubMed  Google Scholar 

  16. Takahashi M, Fukuda K, Ohata T, Sugimura T, Wakabayashi K (1997) Increased expression of inducible and endothelial constitutive nitric oxide synthases in rat colon tumors induced by azoxymethane. Cancer Res 57:1233–1237

    CAS  PubMed  Google Scholar 

  17. Grimm EA, Sikora AG, Ekmekcioglu S (2013) Molecular pathways: inflammation-associated nitric-oxide production as a cancer-supporting redox mechanism and a potential therapeutic target. Clin Cancer Res 19:5557–5563

    Article  CAS  PubMed  Google Scholar 

  18. Chanvorachote P, Nimmannit U, Stehlik C, Wang L, Jiang BH, Ongpipatanakul B, Rojanasakul Y (2006) Nitric oxide regulates cell sensitivity to cisplatin-induced apoptosis through s-nitrosylation and inhibition of bcl-2 ubiquitination. Cancer Res 66:6353–6360

    Article  CAS  PubMed  Google Scholar 

  19. Engels K, Knauer SK, Loibl S, Fetz V, Harter P, Schweitzer A, Fisseler-Eckhoff A, Kommoss F, Hanker L, Nekljudova V, Hermanns I, Kleinert H, Mann W, du Bois A, Stauber RH (2008) NO signaling confers cytoprotectivity through the survivin network in ovarian carcinomas. Cancer Res 68:5159–5166

    Article  CAS  PubMed  Google Scholar 

  20. Fetz V, Bier C, Habtemichael N, Schuon R, Schweitzer A, Kunkel M, Engels K, Kovacs AF, Schneider S, Mann W, Stauber RH, Knauer SK (2009) Inducible NO synthase confers chemoresistance in head and neck cancer by modulating survivin. Int J Cancer 124:2033–2041

    Article  CAS  PubMed  Google Scholar 

  21. Sikora AG, Gelbard A, Davies MA, Sano D, Ekmekcioglu S, Kwon J, Hailemichael Y, Jayaraman P, Myers JN, Grimm EA, Overwijk WW (2010) Targeted inhibition of inducible nitric oxide synthase inhibits growth of human melanoma in vivo and synergizes with chemotherapy. Clin Cancer Res 16:1834–1844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zhang HX, Deng C, Liu OS, Liu XL, Wu F, Wang JJ, Feng YQ, Hu CH, Tang ZG (2014) Inducible nitric oxide inhibitor enhances the anti-tumor effect of cisplatin on CNE-2 cells by inducing cell apoptosis. Eur Rev Med Pharmacol Sci 18:2789–2797

    PubMed  Google Scholar 

  23. Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF (2008) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the tax 327 study. J Clin Oncol 26:242–245

    Article  CAS  PubMed  Google Scholar 

  24. Shepherd FA, Dancey J, Ramlau R, Mattson K, Gralla R, O’Rourke M, Levitan N, Gressot L, Vincent M, Burkes R, Coughlin S, Kim Y, Berille J (2000) Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol 18:2095–2103

    CAS  PubMed  Google Scholar 

  25. Fossella FV, DeVore R, Kerr RN, Crawford J, Natale RR, Dunphy F, Kalman L, Miller V, Lee JS, Moore M, Gandara D, Karp D, Vokes E, Kris M, Kim Y, Gamza F, Hammershaimb L (2000) Randomized phase III trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy regimens. The TAX 320 non-small cell lung cancer study group. J Clin Oncol 18:2354–2362

    CAS  PubMed  Google Scholar 

  26. Chida N, Hirasawa Y, Ohkawa T, Ishii Y, Sudo Y, Tamura K, Mutoh S (2005) Pharmacological profile of FR260330, a novel orally active inducible nitric oxide synthase inhibitor. Eur J Pharmacol 509:71–76

    Article  CAS  PubMed  Google Scholar 

  27. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284:808–812

    Article  CAS  PubMed  Google Scholar 

  28. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised recist guideline (version 1.1). Eur J Cancer 45:228–247

    Article  CAS  PubMed  Google Scholar 

  29. Kenmotsu H, Tanigawara Y (2015) Pharmacokinetics, dynamics and toxicity of docetaxel: why the japanese dose differs from the western dose. Cancer Sci 106:497–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Mitchell PL, Basser R, Chipman M, Grigg A, Cebon J, Davis ID, Zalcberg J, Ng S, Appia F, Green M (2003) A phase I dose-escalation study of docetaxel with granulocyte colony-stimulating factor support in patients with solid tumours. Ann Oncol 14:788–794

    Article  CAS  PubMed  Google Scholar 

  31. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit t cell responses by an no-dependent mechanism. J Immunol 168:689–695

    Article  CAS  PubMed  Google Scholar 

  33. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203:2691–2702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Jayaraman P, Parikh F, Lopez-Rivera E, Hailemichael Y, Clark A, Ma G, Cannan D, Ramacher M, Kato M, Overwijk WW, Chen SH, Umansky VY, Sikora AG (2012) Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. J Immunol 188:5365–5376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Michelle Utton-Mishra, Choice Healthcare Solutions, for medical writing assistance, funded by Astellas Pharma Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. Luke.

Ethics declarations

Conflict of interest

J.L. has no COIs; P.L.R. has received consultancy/advisory fees from Astellas, Pfizer, Genetech and Astex; G.I.S. reports funding to the Dana-Farber Cancer Institute Early Drug Development Center for conduct of the study; J.I. has not COIs; A.K., R.S., T.Y., A.F. and C.D. are employees of Astellas Pharma Global Development, Inc.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luke, J.J., LoRusso, P., Shapiro, G.I. et al. ASP9853, an inhibitor of inducible nitric oxide synthase dimerization, in combination with docetaxel: preclinical investigation and a Phase I study in advanced solid tumors. Cancer Chemother Pharmacol 77, 549–558 (2016). https://doi.org/10.1007/s00280-016-2967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-2967-0

Keywords

Navigation