Skip to main content

Advertisement

Log in

Interactions of cyclin-dependent kinase inhibitors AT-7519, flavopiridol and SNS-032 with ABCB1, ABCG2 and ABCC1 transporters and their potential to overcome multidrug resistance in vitro

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

ATP-binding cassette (ABC) transporters play an important role in multidrug resistance (MDR) toward anticancer drugs. Here, we evaluated interactions of cyclin-dependent kinase inhibitors (CDKi) AT-7519, flavopiridol and SNS-032 with the following ABC transporters in vitro: P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2) and multidrug resistance-associated protein 1 (ABCC1).

Methods

Inhibitory potency of studied CDKi to the transporters was evaluated by accumulation assays using fluorescent substrates and MDCKII cells overexpressing human ABCB1, ABCG2 or ABCC1. Resistance of transporter-expressing cells to the CDKi was evaluated by XTT proliferation assay. Observed interactions of CDKi were verified by ATPase assay in ABC transporter-expressing Sf9 membrane vesicles. Combination index analysis was additionally performed in ABC transporter-expressing cancer cell lines, HepG2 and T47D.

Results

Flavopiridol showed a significant inhibitory potency toward ABCG2 and ABCC1. SNS-032 also decreased ABCG2-mediated efflux, while AT-7519 failed to inhibit ABCB1, ABCG2 or ABCC1. Both flavopiridol and SNS-032 showed synergistic antiproliferative effects in combination with relevant ABC transporter substrates such as daunorubicin and topotecan in cancer cells. ABCB1 was found to confer significant resistance to AT-7519 and SNS-032, but not to flavopiridol. In contrast, ABCG2 and ABCC1 conferred resistance to flavopiridol, but not to AT-7519 and SNS-032.

Conclusion

Our data provide detailed information on interactions of flavopiridol, SNS-032 and AT-7519 with ABC transporters, which may help elucidate the pharmacokinetic behavior and toxicity of these compounds. Moreover, we show the ability of flavopiridol and SNS-032, but not AT-7519, to overcome ABC transporter-mediated MDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

ABCB1:

P-glycoprotein

ABCC1:

Multidrug resistance-associated protein 1

ABCG2:

Breast cancer resistance protein

CDK:

Cyclin-dependent kinase

CDKi:

Cyclin-dependent kinase inhibitor

CI:

Combination index

DNR:

Daunorubicin

DRI:

Dose-reduction index

EC50 :

Median effective antiproliferative concentration

MDCKII:

Madin–Darby canine kidney

MDR:

Multidrug resistance

MFI:

Median fluorescence intensity

MIT:

Mitoxantrone

NEM-SG:

N-ethylmaleimide-glutathione

PMS:

Phenazine methosulfate

RF:

Resistance factor

TOP:

Topotecan

XTT:

XTT sodium salt

References

  1. Choi YH, Yu AM (2014) ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des 20:793–807

    Article  CAS  PubMed  Google Scholar 

  2. Wu CP, Hsieh CH, Wu YS (2011) The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol Pharm 8:1996–2011

    Article  CAS  PubMed  Google Scholar 

  3. Shukla S, Wu CP, Ambudkar SV (2008) Development of inhibitors of ATP-binding cassette drug transporters: present status and challenges. Expert Opin Drug Metab Toxicol 4:205–223

    Article  CAS  PubMed  Google Scholar 

  4. Shukla S, Ohnuma S, Ambudkar SV (2010) Improving cancer chemotherapy with modulators of ABC drug transporters. Curr Drug Targets 12:621–630

    Article  Google Scholar 

  5. Yang AK, Zhou ZW, Wei MQ, Liu JP, Zhou SF (2010) Modulators of multidrug resistance associated proteins in the management of anticancer and antimicrobial drug resistance and the treatment of inflammatory diseases. Curr Top Med Chem 10:1732–1756

    Article  CAS  PubMed  Google Scholar 

  6. Coley HM (2010) Overcoming multidrug resistance in cancer: clinical studies of p-glycoprotein inhibitors. Methods Mol Biol 596:341–358

    Article  CAS  PubMed  Google Scholar 

  7. Robey RW, Ierano C, Zhan Z, Bates SE (2011) The challenge of exploiting ABCG2 in the clinic. Curr Pharm Biotechnol 12:595–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kathawala RJ, Gupta P, Ashby CR Jr, Chen ZS (2015) The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 18:1–17

    Article  PubMed  Google Scholar 

  9. Eadie LN, Hughes TP, White DL (2014) Interaction of the efflux transporters ABCB1 and ABCG2 with imatinib, nilotinib, and dasatinib. Clin Pharmacol Ther 95:294–306

    Article  CAS  PubMed  Google Scholar 

  10. Anreddy N, Gupta P, Kathawala RJ, Patel A, Wurpel JN, Chen ZS (2014) Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules 19:13848–13877

    Article  PubMed  Google Scholar 

  11. Lolli G, Johnson LN (2005) CAK-cyclin-dependent activating kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle 4:572–577

    Article  CAS  PubMed  Google Scholar 

  12. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  CAS  PubMed  Google Scholar 

  13. Pavletich NP (1999) Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 287:821–828

    Article  CAS  PubMed  Google Scholar 

  14. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166

    Article  CAS  PubMed  Google Scholar 

  15. Canavese M, Santo L, Raje N (2012) Cyclin dependent kinases in cancer: potential for therapeutic intervention. Cancer Biol Ther 13:451–457

    Article  CAS  PubMed  Google Scholar 

  16. Cicenas J, Valius M (2011) The CDK inhibitors in cancer research and therapy. J Cancer Res Clin Oncol 137:1409–1418

    Article  CAS  PubMed  Google Scholar 

  17. Gallorini M, Cataldi A, di Giacomo V (2012) Cyclin-dependent kinase modulators and cancer therapy. BioDrugs 26:377–391

    CAS  PubMed  Google Scholar 

  18. Lin TS, Ruppert AS, Johnson AJ, Fischer B, Heerema NA, Andritsos LA, Blum KA, Flynn JM, Jones JA, Hu W, Moran ME, Mitchell SM, Smith LL, Wagner AJ, Raymond CA, Schaaf LJ, Phelps MA, Villalona-Calero MA, Grever MR, Byrd JC (2009) Phase II study of flavopiridol in relapsed chronic lymphocytic leukemia demonstrating high response rates in genetically high-risk disease. J Clin Oncol 27:6012–6018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bible KC, Peethambaram PP, Oberg AL, Maples W, Groteluschen DL, Boente M, Burton JK, Gomez Dahl LC, Tibodeau JD, Isham CR, Maguire JL, Shridhar V, Kukla AK, Voll KJ, Mauer MJ, Colevas AD, Wright J, Doyle LA, Erlichman C (2012) A phase 2 trial of flavopiridol (Alvocidib) and cisplatin in platin-resistant ovarian and primary peritoneal carcinoma: MC0261. Gynecol Oncol 127:55–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Heath EI, Bible K, Martell RE, Adelman DC, Lorusso PM (2008) A phase 1 study of SNS-032 (formerly BMS-387032), a potent inhibitor of cyclin-dependent kinases 2, 7 and 9 administered as a single oral dose and weekly infusion in patients with metastatic refractory solid tumors. Invest New Drugs 26:59–65

    Article  CAS  PubMed  Google Scholar 

  21. Tong WG, Chen R, Plunkett W, Siegel D, Sinha R, Harvey RD, Badros AZ, Popplewell L, Coutre S, Fox JA, Mahadocon K, Chen T, Kegley P, Hoch U, Wierda WG (2010) Phase I and pharmacologic study of SNS-032, a potent and selective Cdk2, 7, and 9 inhibitor, in patients with advanced chronic lymphocytic leukemia and multiple myeloma. J Clin Oncol 28:3015–3022

    Article  CAS  PubMed  Google Scholar 

  22. Cihalova D, Hofman J, Ceckova M, Staud F (2013) Purvalanol A, olomoucine II and roscovitine inhibit ABCB1 transporter and synergistically potentiate cytotoxic effects of daunorubicin in vitro. PLoS ONE 8:e83467

    Article  PubMed Central  PubMed  Google Scholar 

  23. Cui Y, Konig J, Buchholz JK, Spring H, Leier I, Keppler D (1999) Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 55:929–937

    CAS  PubMed  Google Scholar 

  24. Sarkadi B, Price EM, Boucher RC, Germann UA, Scarborough GA (1992) Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem 267:4854–4858

    CAS  PubMed  Google Scholar 

  25. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681

    Article  CAS  PubMed  Google Scholar 

  26. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58

    Article  CAS  PubMed  Google Scholar 

  27. Xia CQ, Smith PG (2012) Drug efflux transporters and multidrug resistance in acute leukemia: therapeutic impact and novel approaches to mediation. Mol Pharmacol 82:1008–1021

    Article  CAS  PubMed  Google Scholar 

  28. Scripture CD, Figg WD (2006) Drug interactions in cancer therapy. Nat Rev Cancer 6:546–558

    Article  CAS  PubMed  Google Scholar 

  29. Hofman J, Ahmadimoghaddam D, Hahnova L, Pavek P, Ceckova M, Staud F (2012) Olomoucine II and purvalanol A inhibit ABCG2 transporter in vitro and in situ and synergistically potentiate cytostatic effect of mitoxantrone. Pharmacol Res 65:312–319

    Article  CAS  PubMed  Google Scholar 

  30. Hofman J, Kucera R, Cihalova D, Klimes J, Ceckova M, Staud F (2013) Olomoucine II, but not purvalanol A, is transported by breast cancer resistance protein (ABCG2) and P-glycoprotein (ABCB1). PLoS ONE 8:e75520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhou L, Schmidt K, Nelson FR, Zelesky V, Troutman MD, Feng B (2009) The effect of breast cancer resistance protein and P-glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec), prazosin, and 2-methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)phenyl)propanoic acid (PF-407288) in mice. Drug Metab Dispos 37:946–955

    Article  CAS  PubMed  Google Scholar 

  32. Xia B, Liu X, Zhou Q, Feng Q, Li Y, Liu W, Liu Z (2013) Disposition of orally administered a promising chemotherapeutic agent flavopiridol in the intestine. Drug Dev Ind Pharm 39:845–853

    Article  CAS  PubMed  Google Scholar 

  33. Robey RW, Medina-Perez WY, Nishiyama K, Lahusen T, Miyake K, Litman T, Senderowicz AM, Ross DD, Bates SE (2001) Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res 7:145–152

    CAS  PubMed  Google Scholar 

  34. Nakanishi T, Karp JE, Tan M, Doyle LA, Peters T, Yang W, Wei D, Ross DD (2003) Quantitative analysis of breast cancer resistance protein and cellular resistance to flavopiridol in acute leukemia patients. Clin Cancer Res 9:3320–3328

    CAS  PubMed  Google Scholar 

  35. Hooijberg JH, Broxterman HJ, Scheffer GL, Vrasdonk C, Heijn M, de Jong MC, Scheper RJ, Lankelma J, Pinedo HM (1999) Potent interaction of flavopiridol with MRP1. Br J Cancer 81:269–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kamath AV, Chong S, Chang M, Marathe PH (2005) P-glycoprotein plays a role in the oral absorption of BMS-387032, a potent cyclin-dependent kinase 2 inhibitor, in rats. Cancer Chemother Pharmacol 55:110–116

    Article  CAS  PubMed  Google Scholar 

  37. Loschmann N, Michaelis M, Rothweiler F, Zehner R, Cinatl J, Voges Y, Sharifi M, Riecken K, Meyer J, von Deimling A, Fichtner I, Ghafourian T, Westermann F, Cinatl J Jr (2013) Testing of SNS-032 in a panel of human neuroblastoma cell lines with acquired resistance to a broad range of drugs. Transl Oncol 6:685–696

    Article  PubMed Central  PubMed  Google Scholar 

  38. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    Article  CAS  PubMed  Google Scholar 

  39. Glavinas H, Mehn D, Jani M, Oosterhuis B, Heredi-Szabo K, Krajcsi P (2008) Utilization of membrane vesicle preparations to study drug-ABC transporter interactions. Expert Opin Drug Metab Toxicol 4:721–732

    Article  CAS  PubMed  Google Scholar 

  40. Baumann KH, Kim H, Rinke J, Plaum T, Wagner U, Reinartz S (2013) Effects of alvocidib and carboplatin on ovarian cancer cells in vitro. Exp Oncol 35:168–173

    CAS  PubMed  Google Scholar 

  41. Nagaria TS, Williams JL, Leduc C, Squire JA, Greer PA, Sangrar W (2013) Flavopiridol synergizes with sorafenib to induce cytotoxicity and potentiate antitumorigenic activity in EGFR/HER-2 and mutant RAS/RAF breast cancer model systems. Neoplasia 15:939–951

    Article  PubMed Central  PubMed  Google Scholar 

  42. Walsby E, Lazenby M, Pepper C, Burnett AK (2011) The cyclin-dependent kinase inhibitor SNS-032 has single agent activity in AML cells and is highly synergistic with cytarabine. Leukemia 25:411–419

    Article  CAS  PubMed  Google Scholar 

  43. Karp JE, Garrett-Mayer E, Estey EH, Rudek MA, Smith BD, Greer JM, Drye DM, Mackey K, Dorcy KS, Gore SD, Levis MJ, McDevitt MA, Carraway HE, Pratz KW, Gladstone DE, Showel MM, Othus M, Doyle LA, Wright JJ, Pagel JM (2012) Randomized phase II study of two schedules of flavopiridol given as timed sequential therapy with cytosine arabinoside and mitoxantrone for adults with newly diagnosed, poor-risk acute myelogenous leukemia. Haematologica 97:1736–1742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Carrick S, Parker S, Wilcken N, Ghersi D, Marzo M, Simes J (2005) Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane Database Syst Rev CD003372

  45. Saxena M, Stephens MA, Pathak H, Rangarajan A (2011) Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis 2:e179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J (2007) Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 35:1333–1340

    Article  CAS  PubMed  Google Scholar 

  47. Rathos MJ, Joshi K, Khanwalkar H, Manohar SM, Joshi KS (2012) Molecular evidence for increased antitumor activity of gemcitabine in combination with a cyclin-dependent kinase inhibitor, P276-00 in pancreatic cancers. J Transl Med 10:161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Rosato RR, Almenara JA, Maggio SC, Atadja P, Craig R, Vrana J, Dent P, Grant S (2005) Potentiation of the lethality of the histone deacetylase inhibitor LAQ824 by the cyclin-dependent kinase inhibitor roscovitine in human leukemia cells. Mol Cancer Ther 4:1772–1785

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of Charles University in Prague (Grant No. 700912/C/2012 and SVV/2015/260-185). The publication is co-financed by the European Social Fund and the state budget of the Czech Republic (Project No. CZ 1.07/2.2.00/28.0194, the title of the project FAFIS). The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Ceckova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cihalova, D., Staud, F. & Ceckova, M. Interactions of cyclin-dependent kinase inhibitors AT-7519, flavopiridol and SNS-032 with ABCB1, ABCG2 and ABCC1 transporters and their potential to overcome multidrug resistance in vitro. Cancer Chemother Pharmacol 76, 105–116 (2015). https://doi.org/10.1007/s00280-015-2772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2772-1

Keywords

Navigation