Skip to main content

Advertisement

Log in

Chemotherapy-induced gut toxicity: are alterations to intestinal tight junctions pivotal?

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Chemotherapy-induced gut toxicity (CIGT) is a frequent, debilitating and dose-limiting side effect of anti-cancer cytotoxic therapies. Despite much research, many of the underlying mechanisms remain poorly understood. Recently, there has been renewed interest in the role that intestinal permeability and tight junctions play in the pathogenesis of chemotherapy-induced gut toxicity. Tight junctions have been linked with many of the known hall marks of toxicity including pro-inflammatory cytokines and pathogenic bacteria. In this critical review, we highlight the research literature addressing modifications in tight junctions following chemotherapy administration and how tight junctions may be implicated in the pathophysiology of CIGT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sonis ST (2004) The pathobiology of mucositis. Nat Rev Cancer 4(4):277–284

    Article  PubMed  CAS  Google Scholar 

  2. Keefe DM, Schubert MM, Elting LS, Sonis ST, Epstein JB, Raber-Durlacher JE, Migliorati CA, McGuire DB, Hutchins RD, Peterson DE (2007) Updated clinical practice guidelines for the prevention and treatment of mucositis. Cancer 109(5):820–831

    Article  PubMed  CAS  Google Scholar 

  3. Elting LS, Cooksley C, Chambers M, Cantor SB, Manzullo E, Rubenstein EB (2003) The burdens of cancer therapy. Clinical and economic outcomes of chemotherapy-induced mucositis. Cancer 98(7):1531–1539

    Article  PubMed  Google Scholar 

  4. Keefe DM, Cummins AG, Dale BM, Kotasek D, Robb TA, Sage RE (1997) Effect of high-dose chemotherapy on intestinal permeability in humans. Clin Sci 92(4):385–389

    PubMed  CAS  Google Scholar 

  5. Sonis ST (2004) Oral mucositis in cancer therapy. J Support Oncol 2(6 Suppl 3):3–8

    PubMed  Google Scholar 

  6. Sonis ST (2004) A biological approach to mucositis. J Support Oncol 2(1):21–32 discussion 35–26

    PubMed  Google Scholar 

  7. Rubenstein EB, Peterson DE, Schubert M, Keefe D, McGuire D, Epstein J, Elting LS, Fox PC, Cooksley C, Sonis ST (2004) Clinical practice guidelines for the prevention and treatment of cancer therapy-induced oral and gastrointestinal mucositis. Cancer 100(9 Suppl):2026–2046

    Article  PubMed  Google Scholar 

  8. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB (2004) Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100(9 Suppl):1995–2025

    Article  PubMed  Google Scholar 

  9. Logan RM, Gibson RJ, Bowen JM, Stringer AM, Sonis ST, Keefe DM (2008) Characterisation of mucosal changes in the alimentary tract following administration of irinotecan: implications for the pathobiology of mucositis. Cancer Chemother Pharmacol 62(1):33–41

    Article  PubMed  CAS  Google Scholar 

  10. Clarke JM, Pelton NC, Bajka BH, Howarth GS, Read LC, Butler RN (2006) Use of the 13C-sucrose breath test to assess chemotherapy-induced small intestinal mucositis in the rat. Cancer Biol Ther 5(1):34–38

    Article  PubMed  CAS  Google Scholar 

  11. Logan RM, Stringer AM, Bowen JM, Gibson RJ, Sonis ST, Keefe DM (2008) Serum levels of NFkappaB and pro-inflammatory cytokines following administration of mucotoxic drugs. Cancer Biol Ther 7(7):1139–1145

    Article  PubMed  CAS  Google Scholar 

  12. Stringer AM, Gibson RJ, Bowen JM, Logan RM, Yeoh AS, Keefe DM (2007) Chemotherapy-induced mucositis: the role of gastrointestinal microflora and mucins in the luminal environment. J Support Oncol 5(6):259–267

    PubMed  CAS  Google Scholar 

  13. Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, Said HM (2004) TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 286(3):G367–G376

    Article  PubMed  CAS  Google Scholar 

  14. Logan RM, Stringer AM, Bowen JM, Yeoh AS, Gibson RJ, Sonis ST, Keefe DM (2007) The role of pro-inflammatory cytokines in cancer treatment-induced alimentary tract mucositis: pathobiology, animal models and cytotoxic drugs. Cancer Treat Rev 33(5):448–460

    Article  PubMed  CAS  Google Scholar 

  15. Philpott DJ, McKay DM, Sherman PM, Perdue MH (1996) Infection of T84 cells with enteropathogenic Escherichia coli alters barrier and transport functions. Am Journal Physiol 270(4 Pt 1):G634–G645

    CAS  Google Scholar 

  16. Spitz J, Yuhan R, Koutsouris A, Blatt C, Alverdy J, Hecht G (1995) Enteropathogenic Escherichia coli adherence to intestinal epithelial monolayers diminishes barrier function. Am J Physiol 268(2 Pt 1):G374–G379

    PubMed  CAS  Google Scholar 

  17. Walsh-Reitz MM, Huang EF, Musch MW, Chang EB, Martin TE, Kartha S, Toback FG (2005) AMP-18 protects barrier function of colonic epithelial cells: role of tight junction proteins. Am J Physiol Gastrointest Liver Physiol 289(1):G163–G171

    Article  PubMed  CAS  Google Scholar 

  18. Al-Sadi R, Ye D, Dokladny K, Ma TY (2008) Mechanism of IL-1beta-induced increase in intestinal epithelial tight junction permeability. J Immunol 180(8):5653–5661

    PubMed  CAS  Google Scholar 

  19. Bertiaux-Vandaele N, Youmba SB, Belmonte L, Lecleire S, Antonietti M, Gourcerol G, Leroi AM, Dechelotte P, Menard JF, Ducrotte P, Coeffier M (2011) The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol 106(12):2165–2173

    Article  PubMed  CAS  Google Scholar 

  20. Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124(1):3–20 quiz 21–22

    Article  PubMed  CAS  Google Scholar 

  21. Blijlevens NM, Donnelly JP, de Pauw BE (2005) Prospective evaluation of gut mucosal barrier injury following various myeloablative regimens for haematopoietic stem cell transplant. Bone Marrow Transplant 35(7):707–711

    Article  PubMed  CAS  Google Scholar 

  22. Blijlevens NM, Van’t Land B, Donnelly JP, M’Rabet L, de Pauw BE (2004) Measuring mucosal damage induced by cytotoxic therapy. Support Care Cancer 12(4):227–233

    Article  PubMed  CAS  Google Scholar 

  23. Daniele B, Secondulfo M, De Vivo R, Pignata S, De Magistris L, Delrio P, Palaia R, Barletta E, Tambaro R, Carratu R (2001) Effect of chemotherapy with 5-fluorouracil on intestinal permeability and absorption in patients with advanced colorectal cancer. J Clin Gastroenterol 32(3):228–230

    Article  PubMed  CAS  Google Scholar 

  24. Fazeny-Dorner B, Veitl M, Wenzel C, Brodowicz T, Zielinski C, Muhm M, Vogelsang H, Marosi C (2002) Alterations in intestinal permeability following the intensified polydrug-chemotherapy IFADIC (ifosfamide, Adriamycin, dacarbazine). Cancer Chemother Pharmacol 49(4):294–298

    Article  PubMed  Google Scholar 

  25. Melichar B, Kohout P, Bratova M, Solichova D, Kralickova P, Zadak Z (2001) Intestinal permeability in patients with chemotherapy-induced stomatitis. J Cancer Res Clin Oncol 127(5):314–318

    Article  PubMed  CAS  Google Scholar 

  26. Hollander D (1999) Intestinal permeability, leaky gut, and intestinal disorders. Curr Gastroenterol Rep 1(5):410–416

    Article  PubMed  CAS  Google Scholar 

  27. Gonzalez-Mariscal L, Tapia R, Chamorro D (2008) Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta 1778(3):729–756

    Article  PubMed  CAS  Google Scholar 

  28. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837–848

    Article  PubMed  CAS  Google Scholar 

  29. Melichar B, Dvorak J, Hyspler R, Zadak Z (2005) Intestinal permeability in the assessment of intestinal toxicity of cytotoxic agents. Chemotherapy 51(6):336–338

    Article  PubMed  CAS  Google Scholar 

  30. Madara JL (1998) Regulation of the movement of solutes across tight junctions. Annu Rev Physiol 60:143–159

    Article  PubMed  CAS  Google Scholar 

  31. Anderson JM, Balda MS, Fanning AS (1993) The structure and regulation of tight junctions. Curr Opin Cell Biol 5(5):772–778

    Article  PubMed  CAS  Google Scholar 

  32. Hollande F, Lee DJ, Choquet A, Roche S, Baldwin GS (2003) Adherens junctions and tight junctions are regulated via different pathways by progastrin in epithelial cells. J Cell Sci 116(Pt 7):1187–1197

    Article  PubMed  CAS  Google Scholar 

  33. Inoko A, Itoh M, Tamura A, Matsuda M, Furuse M, Tsukita S (2003) Expression and distribution of ZO-3, a tight junction MAGUK protein, in mouse tissues. Genes Cells 8(11):837–845

    Article  PubMed  CAS  Google Scholar 

  34. Gottardi CJ, Arpin M, Fanning AS, Louvard D (1996) The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell–cell contacts. Proc Nat Acad Sci USA 93(20):10779–10784

    Article  PubMed  CAS  Google Scholar 

  35. Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126(4):741–754

    Article  PubMed  CAS  Google Scholar 

  36. Gumbiner B, Lowenkopf T, Apatira D (1991) Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Nat Acad Sci USA 88(8):3460–3464

    Article  PubMed  CAS  Google Scholar 

  37. Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Nat Acad Sci USA 96(2):511–516

    Article  PubMed  CAS  Google Scholar 

  38. Will C, Fromm M, Muller D (2008) Claudin tight junction proteins: novel aspects in paracellular transport. Perit Dial Int 28(6):577–584

    PubMed  CAS  Google Scholar 

  39. Poritz LS, Garver KI, Tilberg AF, Koltun WA (2004) Tumor necrosis factor alpha disrupts tight junction assembly. J Surg Res 116(1):14–18

    Article  PubMed  CAS  Google Scholar 

  40. McCarthy KM, Skare IB, Stankewich MC, Furuse M, Tsukita S, Rogers RA, Lynch RD, Schneeberger EE (1996) Occludin is a functional component of the tight junction. J Cell Sci 109(Pt 9):2287–2298

    PubMed  CAS  Google Scholar 

  41. Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC (2011) Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 141(5):769–776

    Article  PubMed  CAS  Google Scholar 

  42. Balda MS, Whitney JA, Flores C, Gonzalez S, Cereijido M, Matter K (1996) Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134(4):1031–1049

    Article  PubMed  CAS  Google Scholar 

  43. Schulzke JD, Gitter AH, Mankertz J, Spiegel S, Seidler U, Amasheh S, Saitou M, Tsukita S, Fromm M (2005) Epithelial transport and barrier function in occludin-deficient mice. Biochim Biophys Acta 1669(1):34–42

    Article  PubMed  CAS  Google Scholar 

  44. Yu AS, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Lynch RD, Schneeberger EE (2005) Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol 288(6):C1231–C1241

    Article  PubMed  CAS  Google Scholar 

  45. Suzuki T, Elias BC, Seth A, Shen L, Turner JR, Giorgianni F, Desiderio D, Guntaka R, Rao R (2009) PKC eta regulates occludin phosphorylation and epithelial tight junction integrity. Proc Nat Acad Sci USA 106(1):61–66

    Article  PubMed  CAS  Google Scholar 

  46. Gibson RJ, Bowen JM, Alvarez E, Finnie J, Keefe DM (2007) Establishment of a single-dose irinotecan model of gastrointestinal mucositis. Chemotherapy 53(5):360–369

    Article  PubMed  CAS  Google Scholar 

  47. Ma MK, McLeod HL (2003) Lessons learned from the irinotecan metabolic pathway. Curr Med Chem 10(1):41–49

    Article  PubMed  CAS  Google Scholar 

  48. Gibson RJ, Bowen JM, Inglis MR, Cummins AG, Keefe DM (2003) Irinotecan causes severe small intestinal damage, as well as colonic damage, in the rat with implanted breast cancer. J Gastroenterol Hepatol 18(9):1095–1100

    Article  PubMed  CAS  Google Scholar 

  49. Melichar B, Dvorak J, Krcmova L, Hyspler R, Urbanek L, Solichova D (2008) Intestinal permeability and vitamin A absorption in patients with chemotherapy-induced diarrhea. Am J Clin Oncol 31(6):580–584

    Article  PubMed  CAS  Google Scholar 

  50. Nakao T, Nobuhiro K, Komatsu M, Yoshikawa K, Iwata T, Utusnomiya T, Shimada M (2012) Irinotecan injures tight junction and causes bacterial translocation in rat. J Surg Res 173:341–347

    Article  PubMed  CAS  Google Scholar 

  51. Capaldo CT, Nusrat A (2009) Cytokine regulation of tight junctions. Biochim Biophys Acta 1788(4):864–871

    Article  PubMed  CAS  Google Scholar 

  52. Schmitz H, Barmeyer C, Fromm M, Runkel N, Foss HD, Bentzel CJ, Riecken EO, Schulzke JD (1999) Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology 116(2):301–309

    Article  PubMed  CAS  Google Scholar 

  53. Dunlop SP, Hebden J, Campbell E, Naesdal J, Olbe L, Perkins AC, Spiller RC (2006) Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. American J Gastroenterol 101(6):1288–1294

    Article  Google Scholar 

  54. Camilleri M, Gorman H (2007) Intestinal permeability and irritable bowel syndrome. Neurogastroenterol Motility 19(7):545–552

    Article  CAS  Google Scholar 

  55. Marshall JK, Thabane M, Garg AX, Clark W, Meddings J, Collins SM (2004) Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute gastroenteritis in Walkerton. Ontario. Aliment Pharmacol Ther 20(11–12):1317–1322

    Article  PubMed  CAS  Google Scholar 

  56. Tibble JA, Sigthorsson G, Foster R, Forgacs I, Bjarnason I (2002) Use of surrogate markers of inflammation and Rome criteria to distinguish organic from nonorganic intestinal disease. Gastroenterology 123(2):450–460

    Article  PubMed  Google Scholar 

  57. Schulzke JD, Ploeger S, Amasheh M, Fromm A, Zeissig S, Troeger H, Richter J, Bojarski C, Schumann M, Fromm M (2009) Epithelial tight junctions in intestinal inflammation. Ann N Y Acad Sci 1165:294–300

    Article  PubMed  Google Scholar 

  58. Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM, Nusrat A (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 171(11):6164–6172

    PubMed  CAS  Google Scholar 

  59. Chavez AM, Menconi MJ, Hodin RA, Fink MP (1999) Cytokine-induced intestinal epithelial hyperpermeability: role of nitric oxide. Crit Care Med 27(10):2246–2251

    Article  PubMed  CAS  Google Scholar 

  60. Coyne CB, Vanhook MK, Gambling TM, Carson JL, Boucher RC, Johnson LG (2002) Regulation of airway tight junctions by proinflammatory cytokines. Mol Biol Cell 13(9):3218–3234

    Article  PubMed  CAS  Google Scholar 

  61. Mankertz J, Tavalali S, Schmitz H, Mankertz A, Riecken EO, Fromm M, Schulzke JD (2000) Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. J Cell Sci 113(Pt 11):2085–2090

    PubMed  CAS  Google Scholar 

  62. Tazuke Y, Drongowski RA, Teitelbaum DH, Coran AG (2003) Interleukin-6 changes tight junction permeability and intracellular phospholipid content in a human enterocyte cell culture model. Pediatr Surg Int 19(5):321–325

    Article  PubMed  CAS  Google Scholar 

  63. Williams DA (2001) Inflammatory cytokines and mucosal injury. J Nat Cancer Inst Monogr 29:26–30

    Article  CAS  Google Scholar 

  64. Edelblum KL, Turner JR (2009) The tight junction in inflammatory disease: communication breakdown. Curr Opin Pharmacol 9(6):715–720

    Article  PubMed  CAS  Google Scholar 

  65. Ma TY, Boivin MA, Ye D, Pedram A, Said HM (2005) Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol 288(3):G422–G430

    Article  PubMed  CAS  Google Scholar 

  66. Melo ML, Brito GA, Soares RC, Carvalho SB, Silva JV, Soares PM, Vale ML, Souza MH, Cunha FQ, Ribeiro RA (2008) Role of cytokines (TNF-alpha, IL-1beta and KC) in the pathogenesis of CPT-11-induced intestinal mucositis in mice: effect of pentoxifylline and thalidomide. Cancer Chemother Pharmacol 61(5):775–784

    Article  PubMed  CAS  Google Scholar 

  67. Marano CW, Laughlin KV, Russo LM, Peralta Soler A, Mullin JM (1993) Long-term effects of tumor necrosis factor on LLC-PK1 transepithelial resistance. J Cell Physiol 157(3):519–527

    Article  PubMed  CAS  Google Scholar 

  68. Grant-Tschudy KS, Wira CR (2005) Paracrine mediators of mouse uterine epithelial cell transepithelial resistance in culture. J Reprod Immunol 67(1–2):1–12

    Article  PubMed  CAS  Google Scholar 

  69. Mullin JM, Snock KV (1990) Effect of tumor necrosis factor on epithelial tight junctions and transepithelial permeability. Cancer Res 50(7):2172–2176

    PubMed  CAS  Google Scholar 

  70. Fish SM, Proujansky R, Reenstra WW (1999) Synergistic effects of interferon gamma and tumour necrosis factor alpha on T84 cell function. Gut 45(2):191–198

    Article  PubMed  CAS  Google Scholar 

  71. Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR (2005) Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 166(2):409–419

    Article  PubMed  CAS  Google Scholar 

  72. Sonis ST (2002) The biologic role for nuclear factor-kappaB in disease and its potential involvement in mucosal injury associated with anti-neoplastic therapy. Crit Rev Oral Biol Med 13(5):380–389

    Article  PubMed  Google Scholar 

  73. Marcus BC, Wyble CW, Hynes KL, Gewertz BL (1996) Cytokine-induced increases in endothelial permeability occur after adhesion molecule expression. Surgery 120(2):411–416 discussion 416–417

    Article  PubMed  CAS  Google Scholar 

  74. Desai TR, Leeper NJ, Hynes KL, Gewertz BL (2002) Interleukin-6 causes endothelial barrier dysfunction via the protein kinase C pathway. J Surg Res 104(2):118–123

    Article  PubMed  CAS  Google Scholar 

  75. Berkes J, Viswanathan VK, Savkovic SD, Hecht G (2003) Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 52(3):439–451

    Article  PubMed  CAS  Google Scholar 

  76. Wu Z, Milton D, Nybom P, Sjo A, Magnusson KE (1996) Vibrio cholerae hemagglutinin/protease (HA/protease) causes morphological changes in cultured epithelial cells and perturbs their paracellular barrier function. Microb Pathog 21(2):111–123

    Article  PubMed  CAS  Google Scholar 

  77. Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Burns J, Keefe DM (2007) Chemotherapy-induced diarrhea is associated with changes in the luminal environment in the DA rat. Exp Biol Med 232(1):96–106

    CAS  Google Scholar 

  78. Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Keefe DM (2008) Faecal microflora and beta-glucuronidase expression are altered in an irinotecan-induced diarrhea model in rats. Cancer Biol Ther 7(12):1919–1925

    Article  PubMed  CAS  Google Scholar 

  79. Knutton S, Lloyd DR, McNeish AS (1987) Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infect Immun 55(1):69–77

    PubMed  CAS  Google Scholar 

  80. Muza-Moons MM, Schneeberger EE, Hecht GA (2004) Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cell Microbiol 6(8):783–793

    Article  PubMed  CAS  Google Scholar 

  81. Singh U, Van Itallie CM, Mitic LL, Anderson JM, McClane BA (2000) CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple large complex species, one of which contains the tight junction protein occludin. J Biol Chem 275(24):18407–18417

    Article  PubMed  CAS  Google Scholar 

  82. Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S (1999) Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J Cell Biol 147(1):195–204

    Article  PubMed  Google Scholar 

  83. Bjarnason I, MacPherson A, Hollander D (1995) Intestinal permeability: an overview. Gastroenterology 108(5):1566–1581

    Article  PubMed  CAS  Google Scholar 

  84. Keefe DM, Brealey J, Goland GJ, Cummins AG (2000) Chemotherapy for cancer causes apoptosis that precedes hypoplasia in crypts of the small intestine in humans. Gut 47(5):632–637

    Article  PubMed  CAS  Google Scholar 

  85. Hamada K, Shitara Y, Sekine S, Horie T (2010) Zonula Occludens-1 alterations and enhanced intestinal permeability in methotrexate-treated rats. Cancer Chemother Pharmacol 66(6):1031–1038

    Article  PubMed  CAS  Google Scholar 

  86. Maeda T, Miyazono Y, Ito K, Hamada K, Sekine S, Horie T (2010) Oxidative stress and enhanced paracellular permeability in the small intestine of methotrexate-treated rats. Cancer Chemother Pharmacol 65(6):1117–1123

    Article  PubMed  CAS  Google Scholar 

  87. Chen Y, Lu Q, Schneeberger EE, Goodenough DA (2000) Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells. Mol Biol Cell 11(3):849–862

    PubMed  CAS  Google Scholar 

  88. Basuroy S, Seth A, Elias B, Naren AP, Rao R (2006) MAPK interacts with occludin and mediates EGF-induced prevention of tight junction disruption by hydrogen peroxide. Biochem J 393(Pt 1):69–77

    PubMed  CAS  Google Scholar 

  89. Youmba SB, Belmonte L, Galas L, Boukhettala N, Bole-Feysot C, Dechelotte P, Coeffier M (2011) Methotrexate Modulates Tight Junctions Through NF-kappaB, MEK and JNK Pathways. J Pediatr Gastroenterol Nutr 54(4):463–470

    Article  Google Scholar 

Download references

Acknowledgments

Dr JM Bowen is a recipient of an NHMRC Post-Doctoral Training Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel J. Gibson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wardill, H.R., Bowen, J.M. & Gibson, R.J. Chemotherapy-induced gut toxicity: are alterations to intestinal tight junctions pivotal?. Cancer Chemother Pharmacol 70, 627–635 (2012). https://doi.org/10.1007/s00280-012-1989-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-012-1989-5

Keywords

Navigation