Skip to main content

Advertisement

Log in

Single crystal growth, crystalline structure investigation and high-pressure behavior of impurity-free siderite (FeCO3)

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Single crystals of impurity-free siderite were grown successfully using high-temperature–pressure annealing. The size of crystals ranged up to 100 µm, and they exhibited a rhomboid shape upon cleavage along the (101) plane. The composition of Fe0.9988±0.0011CO3 was quantified using electron probe analysis. Accurate crystalline structural data were investigated by means of single crystal X-ray diffraction (XRD) and the unit cell dimensions obtained in the rhombohedral symmetry of the \(R\bar {3}c\) space group were a = 4.6861(3) and c = 15.362(2), and the final R = 0.0499. Using in situ synchrotron XRD, the high-pressure behavior of impurity-free siderite was investigated up to 20 GPa at ambient temperature. The pressure–volume (PV) EoS was fitted by a third-order Birch–Murnaghan equation, and the isothermal bulk modulus was K0 = 97.5(11) GPa for K0′ = 4. High-pressure Raman spectroscopy was performed at up to 30 GPa at ambient temperature, and the Raman bands shifted as the increase of pressure (\(\frac{{{\text{d}}{\nu _i}}}{{{\text{d}}P}}\)) was determined. In combination with the high-pressure Raman results and the bulk modulus K0, the mode Grüneisen parameters of each vibration were calculated. Meanwhile, high-temperature Raman spectroscopy was carried out at up to 300 °C and the Raman band shift (\(\frac{{{\text{d}}{\nu _i}}}{{{\text{d}}t}}\)) was also quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson OL (2000) The Grüneisen ratio for the last 30 years. Geophys J Int 143:279–294

    Article  Google Scholar 

  • Bischoff WD, Sharma SK, Mackenzie FT (1985) Carbonate ion disorder in synthetic and biogenic magnesian calcites—a Raman spectral study. Am Miner 70(5–6):581–589

    Google Scholar 

  • Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, UK

    Google Scholar 

  • Cerantola V, McCammon C, Kupenko I, Kantor I, Marini C, Wilke M, Ismailova L, Solopova N, Chumakov A, Pascarelli S, Dubrovinsky L (2015) High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin rossover. Am Miner 100:2670–2681

    Article  Google Scholar 

  • Cerantola V, Bykova E, Kupenko I, Merlini M, Ismailova L, McCammon C, Bykov M, Chumakov AI, Petitgirard S, Kantor I, Svitlyk V, Jacobs J, Hanfland M, Mezouar M, Prescher C, Ruffer R, Prakapenka VB, Dubrovinsky L (2017) Stability of iron-bearing carbonates in the deep Earth’s interior. Nat Commun 8:15960

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13

    Article  Google Scholar 

  • Edwards HGM, Villar J, Jehlicka SE, J., and Munshi T (2005) FT-Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals. Spectrochimica Acta Part A 61:2273–2280

    Article  Google Scholar 

  • Farfan G, Wang S, Ma H, Caracas R, Mao WL (2012) Bonding and structural changes in siderite at high pressure. Am Miner 97:1421–1426

    Article  Google Scholar 

  • French BM (1971) Stability relations of siderite (FeCO3) in the system Fe–C–O. Am J Sci 27:37–78

    Article  Google Scholar 

  • Fu S, Yang J, Lin J-F (2017) Abnormal elasticity of single-crystal magnesiosiderite across the spin transition in Earth’s lower mantle. Phys Rev Lett 118:036402

    Article  Google Scholar 

  • Gunasekaran S, Anbalagan G, Pandi S (2006) Raman and infrared spectra of carbonates of calcite structure. J Raman Spectrosc 37:892–899

    Article  Google Scholar 

  • Hazen RM, Finger L (1982) Comparative crystal chemistry: temperature, pressure, composition and the variation of crystal structure. Wiley, New York

    Google Scholar 

  • Hazen RM, Prewitt CT (1977) Effects of temperature and pressure on interatomic distances in oxygen-based minerals. Am Miner 62:309–315

    Google Scholar 

  • Hazen RM, Hemley RJ, Mangum AJ (2012) Carbon in Earth’s interior: storage, cycling, and life. EOS Trans Am Geophys Union 93(2):17–18

    Article  Google Scholar 

  • Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427:60–63

    Article  Google Scholar 

  • Jana D, Walker D (1997) The impact of carbon on element distribution during core formation. Geochim Cosmochim Acta 61(13):2759–2763

    Article  Google Scholar 

  • Kaabar W, Botta S, Devonshire R (2011) Raman spectroscopic study of mixed carbonate materials. Spectrochim Acta Part A 78:136–141

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (2004) General structure analysis system(GSAS). Los Alamos National Laboratory Report LAUR, pp 86–748

  • Lavina B, Dera P, Downs RT, Prakapenka V, Rivers M, Sutton S, Nicol M (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophys Res Lett 36:L23306

    Article  Google Scholar 

  • Lavina B, Dera P, Downs RT, Tschauner O, Yang W, Shebanova O, Shen G (2010a) Effect of dilution on the spin pairing transition in rhombo-hedral carbonates. High Press Res 30:224–229

    Article  Google Scholar 

  • Lavina B, Dera P, Downs RT, Yang W, Sinogeikin S, Meng Y, Shen G, Schiferl D (2010b) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys Rev B 82:064110

    Article  Google Scholar 

  • Liang W, Liu QQ, Liu L, Kakeshita T, Uchida S, Jin CQ (2013) Growth of Sr2CuO3+δ superconductor single crystals at high pressure. Sci China Phys Mech Astron 56:691–693

    Article  Google Scholar 

  • Liang W, Li Z, Yin Y, Li R, Chen L, He Y, Dong H, Dai L, Li H (2018a) Single crystal growth, characterization and high-pressure Raman spectroscopy of impurity-free magnesite (MgCO3). Phys Chem Miner (in press)

  • Liang W, Chen L, Wang L, Yin Y, Li Z, Li H (2018b) High pressure synthesis of siderite (FeCO3) and its thermal expansion coefficient. High Temp High Press (in press)

  • Lin J-F, Tsuchiya T (2008) Spin transition of iron in the Earth’s lower mantle. Phys Earth Planet Inter 170:248–259

    Article  Google Scholar 

  • Lin J-F, Liu J, Jacobs C, Prakapenka VB (2012) Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. Am Miner 97:583–591

    Article  Google Scholar 

  • Litasov KD, Fei Y, Ohtani E, Kuribayashi T, Funakoshi K (2008) Thermal equation of state of magnesite to 32 GPa and 2073 K. Phys Earth Planet Inter 168:191–203

    Article  Google Scholar 

  • Liu QQ, Yang H, Qin XM, Yu Y, Yang LX, Li FY, Yu RC, Jin CQ, Uchida S (2006) Enhancement of the superconducting critical temperature of Sr2CuO3+δ up to 95 K by ordering dopant atoms. Phys Rev B 74:100506

    Article  Google Scholar 

  • Liu J, Lin J-F, Mao Z, Prakapenka VB (2014) Thermal equation of state and spin transition of magnesiosiderite at high pressure and temperature. Am Miner 99:84–93

    Article  Google Scholar 

  • Liu J, Lin J-F, Prakapenka VB (2015) High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci Rep 5:7640

    Article  Google Scholar 

  • Lobanov SS, Goncharov AF, Litasov KD (2015) Optical properties of siderite (FeCO3) across the spin transition: crossover to iron-rich carbonates in the lower mantle. Am Miner 100:1059–1064

    Article  Google Scholar 

  • Markgraf SA, Reeder RJ (1985) High-temperature structure refinements of calcite and magnesite. Am Miner 70:590–600

    Google Scholar 

  • Mattila A, Pylkkänen T, Rueff JP, Huotari S, Vankó G, Hanfland M, Lehtinen M, Hääänen K (2007) Pressure induced magnetic transition in siderite FeCO3 studied by X-ray emission spectroscopy. J Phys: Condens Matter 19:386206

    Google Scholar 

  • McCammon C (2005) The paradox of mantle redox. Science 308:807–808

    Article  Google Scholar 

  • Merlini M, Sapelli F, Fumagalli P, Gatta GD, Lotti P, Tumiati S, Aabdellatief M, Lausi A, Plaisier J, Hanfland M, Crichton W, Chantel J, Guignard J, Meneghini C, Pavese A, Poli P (2016) High-temperature and high-pressure behavior of carbonates in the ternary diagram CaCO3–MgCO3–FeCO3. Am Miner 101:1423–1430

    Article  Google Scholar 

  • Nagai T, Ishido T, Seto Y, Nishio-Hamane D, Sata N, Fujino K (2010) Pressure-induced spin transition in FeCO3-siderite studied by X-ray diffraction measurements. J Phys Conf Ser 215:012002

    Article  Google Scholar 

  • Prescher C, Prakapenka VB (2015) DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res 35:285–288

    Article  Google Scholar 

  • Rividi N, van Zuilen M, Philippot P, Menez B, Godard G, Poidatz E (2010) Calibration of carbonate composition using micro-Raman analysis: application to planetary surface exploration. Astrobiology 10:293–309

    Article  Google Scholar 

  • Rohrbach A, Schmidt MW (2011) Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature 472:209–212

    Article  Google Scholar 

  • Rosenberg PE (1963) Synthetic solid solutions in the systems MgCO3–FeCO3 and MnCO3–FeCO3. Am Miner 48:1396–1400

    Google Scholar 

  • Ross NL (1997) The equation of state and high-pressure behavior of magnesite. Am Miner 82:682–688

    Article  Google Scholar 

  • Rutt HN, Nicola JH (1974) Raman spectra of carbonates of calcite structure. J Phys C Solid State Phys 7:4522–4528

    Article  Google Scholar 

  • Schauble EA, Ghosh P, Eiler JM (2006) Preferential formation of C-13–O-18 bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochim Cosmochim Acta 70(10):2510–2529

    Article  Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr A B25:925–946

    Article  Google Scholar 

  • Shi H, Luo W, Johansson B, Ahuja R (2008) First-principles calculations of the electronic structure and pressure-induced magnetic transition in siderite FeCO3. Phys Rev B 78:155119

    Article  Google Scholar 

  • Speziale S, Milner A, Lee VE, Clark SM, Pasternak MP, Jeanloz R (2005) Iron spin transition in Earth’s mantle. Proc Natl Acad Sci 102(50):17918–17922

    Article  Google Scholar 

  • Spivak A, Solopova N, Cerantola V, Bykova E, Zakharchenko E, Dubrovinsky L, Litvin Y (2014) Raman study of MgCO3–FeCO3 carbonate solid solution at high pressures up to 55 GPa. Phys Chem Miner 41:633–638

    Article  Google Scholar 

  • Sturhahn W, Jackson JM, Lin J-F (2005) The spin state of iron in minerals of Earth’s lower mantle. Geophys Res Lett 32(12):L12307

    Article  Google Scholar 

  • Wagner JM (2000) On the inadequacy of linear pressure dependence of vibrational frequency. Solid State Commun 116:355–356

    Article  Google Scholar 

  • Weis C, Sternemann C, Cerantola V, Sahle CJ, Spiekermann G, Harder M, Forov Y, Kononov A, Sakrowski R, Yavaş H, Tolan M, Wilke M (2017) Pressure driven spin transition in siderite and magnesiosiderite single crystals. Sci Rep 7:16526

    Article  Google Scholar 

  • Williams Q, Collerson B, Knittle E (1992) Vibrational spectra of magnesite (MgCO3) and calcite-III at high pressures. Am Miner 77:1158–1165

    Google Scholar 

  • Xia H, Yin Y, Dai J, Yang J, Qin X, Jin C, Long Y (2015) Magnetism and magnetocaloric effect study of CaFe0.7Co0.3O3. Mater Res Express 2:046103

    Article  Google Scholar 

  • Yang J, Mao Z, Lin J-F, Prakapenka VB (2014) Single-crystal elasticity of the deep-mantle magnesite at high pressure and temperature. Earth Planet Sci Lett 392:292–299

    Article  Google Scholar 

  • Zhang J, Martinez I, Guyot F, Gillet P, Saxena SK (1997) X-ray diffraction study of magnesite at high pressure and high temperature. Phys Chem Miner 24:122–130

    Article  Google Scholar 

  • Zhang J, Martinez I, Guyot F, Reeder R (1998) Effects of Mg–Fe2+ substitution in calcite-structure carbonates: thermoelastic properties. Am Miner 83:280–287

    Article  Google Scholar 

  • Zhang L, Yan S, Jiang S, Yang K, Wang H, He S, Liang D, Zhang L, He Y, Lan X, Mao C, Wang J, Jiang H, Zheng Y, Dong Z, Zeng L, Li A (2015) Hard X-ray micro-focusing beamline at SSRF. Nucl Sci Technol 26:060101

    Google Scholar 

Download references

Acknowledgements

We acknowledge Jung-Fu Lin from University of Texas at Austin for constructive discussion in carbonate minerals. We thank Yong Meng and Jiali Cai from Institute of Geochemistry, Chinese Academy of Sciences, Guiyang for their valued assistance. This work was financially supported by Major State Research Development Program of China (2016YFC0601101), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (XDB 18010401), and 135 Program of the Institute of Geochemistry (Y2ZZ041000), CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Yin, Y., Li, Z. et al. Single crystal growth, crystalline structure investigation and high-pressure behavior of impurity-free siderite (FeCO3). Phys Chem Minerals 45, 831–842 (2018). https://doi.org/10.1007/s00269-018-0965-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-0965-y

Keywords

Navigation