Skip to main content

Advertisement

Log in

Raman study of MgCO3–FeCO3 carbonate solid solution at high pressures up to 55 GPa

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Magnesite, siderite and ferromagnesites Mg1−x Fe x CO3 (x = 0.05, 0.09, 0.2, 0.4) were characterized using in situ Raman spectroscopy at high pressures up to 55 GPa. For the Mg–Fe-carbonates, the Raman peak positions of six modes (T, L, ν4, ν1, ν3 and 2ν2) in the dependence of iron content in the carbonates at ambient conditions are presented. High-pressure Raman spectroscopy shows that siderite undergoes a spin transition at ~40 GPa. The examination of the solid solutions with compositions Mg0.6Fe0.4CO3, Mg0.8Fe0.2CO3, Mg0.91Fe0.09CO3 and Mg0.95Fe0.05CO3 indicates that with increase in the amount of the Fe spin transition pressure increases up to ~45 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barbour LJ (2001) X-seed: a software tool for supramolecular crystallography. J Supramol Chem 1:189–191

    Article  Google Scholar 

  • Bischoff WD, Sharma SK, Mackenzie FT (1985) Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study. Am Miner 70(5–6):581–589

    Google Scholar 

  • Boulard E, Gloter A, Corgne A, Antonangeli D, Auzende AL, Perrillat JP, Guyot F, Fiquet G (2011) New host for carbon in the deep Earth. PNAS 108(13):5184–5187. doi:10.1073/pnas.1016934108

    Article  Google Scholar 

  • Boulard E, Guyot F, Fiquet G (2012) The influence on Fe content on Raman spectra and unit cell parameters of magnesite–siderite solid solutions. Phys Chem Miner 39:239–246. doi:10.1007/s00269-011-0479-3

    Google Scholar 

  • Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Kaminsky F (2007) Carbonates from the lower part of transition zone or even the lower mantle. EPSL 260:1–9. doi:10.1016/j.epsl.2007.02.038

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. EPSL 298:1–13. doi:10.1016/j.epsl.2010.06.039

    Article  Google Scholar 

  • Farfan G, Wang S, Ma H, Caracas R, Mao WL (2012) Bonding and structural changes in siderite at high pressure. Am Miner 97:1421–1426. doi:10.2138/am.2012.4001

    Article  Google Scholar 

  • Fiquet G, Guyot F, Kunz M, Matas J, Andrault D, Hanfland M (2002) Structural refinements of magnesite at very high pressure. Am Miner 87:1261–1265

    Google Scholar 

  • Frost DJ, Poe BT, Tronnes RG, Libske C, Duba F, Rubie DC (2004) A new large-volume multianvil system. PEPI 143:507–514. doi:10.1016/j.pepi.2004.03.003

    Google Scholar 

  • Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427:60–63. doi:10.1038/nature02181

    Article  Google Scholar 

  • Kaminsky F (2012) Mineralogy of the lower mantle: a review of ‘super-deep’ mineral inclusions in diamond. Earth Sci Rev 110:127–147. doi:10.1016/j.earscirev.2011.10.005

    Article  Google Scholar 

  • Kantor I, Dubrovinsky L, McCammon C, Steinle-Neumann G, Kantor A, Skorodumova N, Pascarelli S, Aquilanti G (2009) Short-range order and Fe clustering in Mg1−xFexO under high pressure. Phys Rev B 80:014204. doi:10.1103/PhysRevB.80.014204

    Article  Google Scholar 

  • Kurnosov A, Kantor I, Boffa-Ballaran T, Lindhardt S, Dubrovinsky L, Kuznetsov A, Zehnder BH (2008) A novel gas-loading system for mechanically closing of various types of diamond anvil cells. Rev Sci Instrum 79:45110. doi:10.1063/1.2902506

    Article  Google Scholar 

  • Langille DB, Oshea DC (1977) Raman-spectroscopy studies of antiferromagnetic FeCO3 and related carbonates. J Phys Chem Solids 38(10):1161–1171

    Google Scholar 

  • Lavina B, Dera P, Downs RT, Prakapenka V, Rivers M, Sutton S, Nicol M (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophys Res Letters 36:L23306. doi:10.1029/2009GL039652

    Article  Google Scholar 

  • Lavina B, Dera P, Downs RT, Yang W, Sinogeikin S, Meng Y, Shen G, Schiferl D (2010) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys Rev B 82(6):064110. doi:10.1103/PhysRevB.82.064110

    Article  Google Scholar 

  • Litasov KD, Ohtani E (2009) Solidus and phase relations of carbonated peridotite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to the lower mantle depths. PEPI 177:46–58. doi:10.1016/j.pepi.2009.07.008

    Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800-kbar under quasi-hydrostatic conditions. J Geophys Res 91(B5):4673–4676

    Article  Google Scholar 

  • Mattila A, Pylkkanen T, Rueff JP, Huotari S, Vanko G, Hanfland M, Lehtinen M, Hamalainen K (2007) Pressure induced magnetic transition in siderite FeCO3 studied by X-ray emission spectroscopy. J Phys Condens Matter 19(38):386206. doi:10.1088/0953-8984/19/38/386206

    Article  Google Scholar 

  • McCammon C, Hutchison MT, Harris JW (1997) Ferric iron content of mineral inclusions in diamonds from São Luiz: a view into the lower mantle. Science 278:434–436. doi:10.1126/science.278.5337.434

    Article  Google Scholar 

  • Oxford Diffraction (2006a) CrysAlis CCD. Oxford Diffraction, Abingdon, England

    Google Scholar 

  • Oxford Diffraction (2006b) CrysAlis RED. Oxford Diffraction, Abingdon, England

    Google Scholar 

  • Rutt HN, Nicola JH (1974) Raman-spectra of carbonates of calcite structure. J Phys C Solid State Phys 7(24):4522–4528

    Article  Google Scholar 

  • Santillan J, Williams Q (2004) A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite. PEPI 143:291–304. doi:10.1016/j.pepi.2003.06.007

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122. doi:10.1107/S0108767307043930

    Article  Google Scholar 

  • Skorodumova NV, Belonoshko AB, Huang L, Ahuja R, Johansson B (2005) Stability of the MgCO3 structures under lower mantle conditions. Am Miner 90:1008–1011. doi:10.2138/am.2005.1685

    Article  Google Scholar 

  • Stagno V, Tange Y, Miyajima N, McCammon CA, Irifune T, Frost DJ (2011) The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity. Geophys Res Lett 38:L19309. doi:10.1029/2011GL049560

    Article  Google Scholar 

  • White WB (1974) The carbonate minerals. In: Farmer VC (ed) The infrared spectra of minerals. Mineralogical Society, London, pp 87–110

    Google Scholar 

Download references

Acknowledgments

This work was funded by grant of the President of RF MК-1386.2013.5 and Grants RFBR 13-05-00835, 12-05-33044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Spivak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spivak, A., Solopova, N., Cerantola, V. et al. Raman study of MgCO3–FeCO3 carbonate solid solution at high pressures up to 55 GPa. Phys Chem Minerals 41, 633–638 (2014). https://doi.org/10.1007/s00269-014-0676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0676-y

Keywords

Navigation