Skip to main content

Advertisement

Log in

In situ observation of a garnet/perovskite transition in CaGeO3

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We used an in situ measurement method to investigate the phase transition of CaGeO3 polymorphs under high pressures and temperatures. A multi-anvil high-pressure apparatus combined with intense synchrotron X-ray radiation was used. The transition boundary between a garnet and a perovskite phase at T = 900–1,650 K and P = 3–8 GPa was determined as occurring at P (GPa) = 9.0−0.0023 × T (K). The transition pressure determined in our study is in general agreement with that observed in previous high-pressure experiments. The slope, dP/dT, of the transition determined in our study is consistent with that calculated from calorimetry data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrault D, Poirier JP (1991) Evolution of the distortion of perovskites under pressure: an EXAFS study of BaZrO3, SrZrO3 and CaGeO3. Phys Chem Mineral 18:91–105

    Article  Google Scholar 

  • Andrault D, Itie JP, Farges F (1996) High-temperature structural study of germinate perovskite and pyroxenoids. Am Mineral 81:822–832

    Google Scholar 

  • Chaplin TD, Ross NL, Reynard B (2000) A high-temperature and high-pressure Raman spectroscopic study of CaGeO3 garnet. Phys Chem Mineral 27:213–219

    Article  Google Scholar 

  • Dorogokupets PI, Dewaele A (2007) Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: internally consistent high-temperature pressure scales. High Press Res 27:431–446

    Article  Google Scholar 

  • Durben DJ, Wolf GH, McMillan PF (1991) Raman scattering study of the high-temperature vibrational properties and stability of CaGeO3 perovskite. Phys Chem Mineral 18:215–223

    Article  Google Scholar 

  • Fei Y, Ricolleau A, Frank M, Mibe K, Shen G, Prakapenka V (2007) Toward an internally consistent pressure scale. Proc Natl Acad Sci 104:9182–9186

    Article  Google Scholar 

  • Holmes NC, Moriarty JA, Gathers GR, Nellis WJ (1989) The equation of state of platinum to 660 GPa (6.6 Mbar). J Appl Phys 66:2962–2967

    Article  Google Scholar 

  • Katsura T, Yamada H, Nishikawa O, Song M, Kubo A, Shinmei T, Yokoshi S, Yoshino T, Walter MJ, Ito E (2004) Olivine-wadsleyite transition in the system (Mg, Fe) 2SiO4. J Geophys Res 109:B02209

    Article  Google Scholar 

  • Liebermann RC, Jones LEA, Ringwood AE (1977) Elasticity of aluminate, titanate, stannate and germinate compounds with the perovskite structure. Phys Earth Planet Inter 14:165–178

    Article  Google Scholar 

  • Liu W, Li B (2007) Compressional and shear wave velocities of polycrystalline CaGeO3 perovskite to 10 GPa. Phys Rev B 75:024107

    Article  Google Scholar 

  • Liu X, Wang Y, Liebermann RC, Maniar PD, Navrotsky A (1991) Phase transition in CaGeO3 perovskite: evidence from X-ray powder diffraction, thermal expansion and heat capacity. Phys Chem Mineral 18:224–230

    Article  Google Scholar 

  • Liu W, Kung J, Wang L, Li B (2008) Thermal equation of state of CaGeO3 perovskite. Am Mineral 93:745–750

    Article  Google Scholar 

  • Lu R, Hofmeister AM (1994) Infrared spectroscopy of CaGeO3 perovskite to 24 GPa and thermodynamic implications. Phys Chem Mineral 21:78–84

    Article  Google Scholar 

  • McMillan P, Ross N (1988) The Raman spectra of several orthorhombic calcium oxide perovskite. Phys Chem Mineral 16:21–28

    Article  Google Scholar 

  • Meng Y, Weidner DJ, Gwanmesia GD, Liebermann RC, Vaughan MT, Wang Y, Leinenweber K, Pacalo RE, Yeganen-Haeri A, Zhao Y (1993) In situ high P-T X-ray diffraction studies on three polymorphs (α, β, γ) of Mg2SiO4. J Geophys Res 98:22199–22207

    Article  Google Scholar 

  • Nakatsuka A, Chaya H, Yoshida A (2005) Crystal structure of single crystal CaGeO3 tetragonal garnet synthesized at 3 GPa and 1,000°C. Am Mineral 90:755–757

    Article  Google Scholar 

  • Ono S, Katsura T, Ito E, Kanzaki M, Yoneda A, Walter MJ, Urakawa S, Utsumi W, Funakoshi K (2001) In situ observation of ilmenite-perovskite phase transition in MgSiO3 using synchrotron radiation. Geophys Res Lett 28:835–838

    Article  Google Scholar 

  • Ono S, Funakoshi K, Nakajima Y, Tange Y, Katsura T (2004) Phase transition of zircon at high P-T conditions. Contrib Mineral Petrol 147:505–509

    Article  Google Scholar 

  • Ono S, Nakajima Y, Funakoshi K (2007) In situ observations of decomposition of kyanite at high pressures and high temperatures. Am Mineral 92:1624–1629

    Article  Google Scholar 

  • Ono S, Brodholt JP, Price GD (2011) Elastic, thermal and structural properties of platinum. J Phys Chem Solid 72:169–175

    Article  Google Scholar 

  • Prewitt CT, Sleight AW (1969) Garnet-like structure of high pressure cadmium germinate and calcium germinate. Science 163:386–387

    Article  Google Scholar 

  • Ringwood AE, Major A (1967) Some high-pressure transformations of geophysical significance. Earth Planet Sci Lett 2:106–110

    Article  Google Scholar 

  • Ringwood AE, Seabrook M (1963) High-pressure phase transformation in germinates pyroxenes and related compounds. J Geophys Res 68:4601–4609

    Article  Google Scholar 

  • Ross NL, Angel RJ (1999) Compression of CaTiO3 and CaGeO3 perovskite. Am Mineral 84:277–281

    Google Scholar 

  • Ross NL, Akaogi M, Navrotsky A, Susaki J, McMillan P (1986) Phase transitions among the CaGeO3 polymorphs (wollastonite, garnet, and perovskite structures): Studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation. J Geophys Res 91:4685–4696

    Article  Google Scholar 

  • Sasaki S, Prewitt CT, Liebermann RC (1983) The crystal structure of CaGeO3 perovskite and the crystal chemistry of GdFeO3-type perovskite. Am Mineral 68:1189–1198

    Google Scholar 

  • Sun T, Umemoto K, Wu Z, Zheng J, Wentzcovitch RM (2008) Lattice dynamics and thermal equation of state of platinum. Phys Rev B 78:024304

    Article  Google Scholar 

  • Susaki J, Akaogi M, Akimoto S, Shimomura O (1985) Garnet-perovskite transition in CaGeO3: in situ X-ray measurements using synchrotron radiation. Geophys Res Lett 12:729–732

    Article  Google Scholar 

  • Zhang J, Li B, Utsumi W, Liebermann RC (1996) In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Phys Chem Minerals 23:1–10

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank A. Suzuki, K. Mibe, and T. Kawamoto for their help in carrying out the experiments. The synchrotron radiation experiments were performed at the NE7A, KEK (Proposal No. 2009G508) and BL04B1, SPring-8 (Proposal No. 2008A1090). This work was partially supported by Grants-in-Aid for Scientific Research from JSPS and the Earthquake Research Institute cooperative research program, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeaki Ono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ono, S., Kikegawa, T. & Higo, Y. In situ observation of a garnet/perovskite transition in CaGeO3 . Phys Chem Minerals 38, 735–740 (2011). https://doi.org/10.1007/s00269-011-0446-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-011-0446-z

Keywords

Navigation