Skip to main content
Log in

Raman scattering study of the high-temperature vibrational properties and stability of CaGeO3 perovskite

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The vibrational properties of metastable Ca-GeO3 perovskite are investigated as a function of temperature using Raman scattering. Mode-assignments are derived from polarized spectra of optically oriented single crystals. Neither symmetry-breaking structural transformations nor soft-mode behavior is revealed in the Raman spectra between room temperature and 650° C. Only a small decrease in the local static octahedral tilt angles can be inferred from the Raman data over this temperature range. A Landau extrapolation of the lowest frequency Ag modes suggests that these modes become critical near 2000° C, a temperature that is above the extrapolated zero pressure melting point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aleksandrov KS (1976) The sequences of structural phase transitions in perovskites. Ferroelectrics 14:801–805

    Google Scholar 

  • Berger J, Hauret G, Rousseau M (1978) Brillouin scattering investigation of the structural phase transition of TlCdF3 and RbCaF3. Solid State Commun 25:569–571

    Google Scholar 

  • Billard D, Servoin JL, Gervais F, Piriou B (1979) High-temperature conventional and Fourier-transform infrared spectroscopy of vibrational states in oxide crystals. High Temp-High Pressures 11:414–422

    Google Scholar 

  • Bina CR, Silver PG (1990) Constraints on lower mantle composition and temperature from density and bulk sound velocity profiles. Geophys Res Lett 17:1153–1156

    Google Scholar 

  • Boyer LL, Hardy JR (1981) Theoretical study of the structural phase transition in RbCaF3. Phys Rev B 24:2577–2591

    Google Scholar 

  • Bukowinski MST, Wolf GH (1988) Equations of state and possible critical phase transitions in MgSiO3 perovskite. In: Ghose S, Coy JMD, Salje S (eds) Structural and Magnetic Phase Transitions in Minerals. Springer, Berlin Heidelberg New York, pp 91–112

    Google Scholar 

  • Bukowinski MST, Wolf GH (1990) Thermodynamically consistent decompression: implications for lower mantle composition. J Geophys Res 95:12583–12593

    Google Scholar 

  • Cowley RA, Buyers WJL, Dolling G (1969) Relationship of normal modes of vibration of strontium titanate and its antiferroelectric phase transition at 110 K. Solid State Commun 7:181–184

    Google Scholar 

  • Fleury PA, Scott JF, Worlock JM (1968) Soft phonon modes and the 110 K phase transition in SrTiO3. Phys Rev Lett 21:16–19

    Google Scholar 

  • Fomin VI, Popkov YA (1976) Anomalies of Brillouin scattering of light near phase transitions in KMnF3 crystal. Sov Phys JETP 43:64–68

    Google Scholar 

  • Fujii Y, Hoshino S, Yamada Y, Shirane G (1974) Neutron scattering study on phase transitions of CsPbCl3. Phys Rev B15:4549–4559

    Google Scholar 

  • Gervais F, Piriou B (1975) Temperature dependence of transverse and longitudinal optic modes in the α and β phases of quartz. Phys Rev B11:3944–3950

    Google Scholar 

  • Gesi K, Axe JD, Shirane G (1972) Dispersion and damping of soft zone-boundary phonons in KMnF3. Phy Rev B5:1933–1941

    Google Scholar 

  • Hirotsu S, Suzuki T, Sawada S (1977) Ultrasonic velocity around the successive phase transition points of CsPbBr3. J Phys Soc Jpn 43:575–582

    Google Scholar 

  • Hirotsu S, Suzuki T (1978) Elastic constants and thermal expansion of CsPbCl3. J Phys Soc Jpn 44:1604–1611

    Google Scholar 

  • Hochli UT (1973) Acoustic anharmonicity and the ΔE effect in tetragonal SrTiO3. Solid State Commun 13:1369–1373

    Google Scholar 

  • Hochli UT, Bruce AD (1980) Elastic critical behavior in SrTiO3. J Phys C 13:1963–1976

    Google Scholar 

  • Ito E, Yamada H (1982) Stability relations of silicate spinels, ilmenites, and perovskites. In: Akimoto S, Manghnani MH (eds) High-Pressure Research in Mineral Physics. Center for Academic Publications, Tokyo, pp 405–419

    Google Scholar 

  • Ito E, Takahashi E, Matsui Y (1984) The mineralogy and chemistry of the lower mantle: an implication of the ultrahigh-pressure phase relations in the system MgO FeO-SiO2. Earth Planet Sci Lett 67:238–248

    Google Scholar 

  • Jackson I (1983) Some geophysical constraints on the chemical composition of the earth's lower mantle. Geophys Res Lett 62:91–103

    Google Scholar 

  • Jeanloz R, Knittle E (1989) Density and composition of the lower mantle. Phil Trans R Soc Lond A 328:377–389

    Google Scholar 

  • Knittle E, Jeanloz R, Smith GL (1986) Thermal expansion of silicate perovskite and stratification of the earth's mantle. Nature 319:214–216

    Google Scholar 

  • Knittle E, Jeanloz R (1987) Synthesis and equation of state of (Mg, Fe)SiO3 perovskite to over 100 gigapascals. Science 235:668–670

    Google Scholar 

  • Landau LD, Lifshitz EM (1980) Statistical Physics. Pergamon, Oxford, p 544

    Google Scholar 

  • Liu LL (1974) Silicate perovskite from phase transformations of pyrope-garnet at high pressure and temperature. Geophys Res Lett 1:277–280

    Google Scholar 

  • Liu X, Wang Y, Liebermann RC (1988) Orthorhombic-tetragonal phase transition in CaGeO3 perovskite. Geophys Res Lett 15:1231–1234

    Google Scholar 

  • Liu X, Wang Y, Liebermann RC, Maniar PD, Navrotsky A (1991) Phase transition in CaGeO3 perovskite: evidence from x-ray powder diffraction, thermal expansion and heat capacity. Phys Chem Min, submitted

  • Lockwood DJ, Torrie BH (1974) Raman scattering study of the three structural phases of KMnF3. J Phys C: Solid State Phys 7:2729–2744

    Google Scholar 

  • McMillan P, Ross N (1988) The Raman spectra of several orthorhombic calcium oxide perovskites. Phys Chem Min 16:21–28

    Google Scholar 

  • Megaw HD (1957) Ferroelectricity in Crystals. Methuen, London, p 220

    Google Scholar 

  • Midorikawa M, Ishibashi Y, Takagi Y (1979) Optical and dilatometric studies of KCaCl3 and RbCaCl3 crystals. J Phys Soc Jpn 46:1240

    Google Scholar 

  • Midorikawa M, Sawada A, Ishibashi Y (1980) A study of Raman scattering in RbCaCl3. J Phys Soc Jpn 48:1202–1205

    Google Scholar 

  • Modine FA, Sonder E, Unruh WP, Finch CB, Westbrook RD (1974) Phase transitions in RbCaF3. Phys Rev B 10:1623–1634

    Google Scholar 

  • Parise JB, Wang Y, Yeganeh-Haeri A, Cox DE, Fei Y (1990) Crystal structure and thermal expansion of (Mg, Fe)SiO3 perovskite. Geophys Res Lett 17:2089–2092

    Google Scholar 

  • Prokert F (1981) Neutron scattering studies on phase transitions and phonon dispersion in CsSrCl3. Phys Stat Sol B 104:261–265

    Google Scholar 

  • Ringwood AE, Major A (1967) Some high-pressure transformations of geophysical interest. Earth Planet Sci Lett 2:106–110

    Google Scholar 

  • Ross NL, Hazen RM (1989) Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K. Phys Chem Min 16:415–420

    Google Scholar 

  • Ross NL, Akaogi M, Navrotsky A, Susaki J, McMillan P (1986) Phase transitions among the CaGeO3 polymorphs (wollastonite, garnet, and perovskite structures): studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation. J Geophys Res 91:4685–4696

    Google Scholar 

  • Rousseau M, Bulou A, Ridou C, Hewat AW (1980) A new model for phase transitions due to octahedra rotations in perovskite structure. Ferroelectrics 25:447–450

    Google Scholar 

  • Sasaki S, Prewitt CT, Liebermann RC (1983) The crystal structure of CaGeO3 and the crystal chemistry of the GdFeO3-type perovskites. Am Mineral 68:1189–1198

    Google Scholar 

  • Shirane G, Yamada Y (1969) Lattice-dynamical study of the 110 K phase transition in SrTiO3. Phys Rev 177:858–863

    Google Scholar 

  • Slonczewski JC, Thomas H (1970) Interaction of elastic strain with the structural transition of strontium titanate. Phys Rev B 1:3599–3608

    Google Scholar 

  • Susaki J, Akaogi M, Akimoto S, Shimomura O (1985) Garnetperovskite transformation in CaGeO3: in-situ X-ray measurements using synchrotron radiation. Geophys Res Lett 12:729–732

    Google Scholar 

  • Wang CH (1984) Raman and Brillouin spectroscopy of structural phase transitions in crystals. In: Iqbal F, Owens FJ (eds) Vibrational Spectroscopy of Phase Transitions. Academic Press, New York, pp 153–207

    Google Scholar 

  • Wang Y, Guyot F, Yeganeh-Haeri A, Liu X, Weidner DJ, Liebermann RC (1989) Twinning in high-pressure perovskites. EOS Trans Amer Geophys Union 70:491

    Google Scholar 

  • Wolf GH, Bukowinski MST (1987) Theoretical study of the structural properties and equations of state of MgSiO3 and CaSiO3 perovskites: implications for lower mantle composition. In: Manghnani MH, Syono Y (eds) High-Pressure Research in Mineral Physics. Terra Scientific, Tokyo, pp 313–331

    Google Scholar 

  • Wolf GH, Durben DJ, McMillan PF (1990) Raman spectroscopic study of the vibrational properties and reversion of CaGeO3 and MgSiO3 perovskites as a function of temperature. EOS Trans Am Geophys Union 71:1667

    Google Scholar 

  • Yacoby Y, Cowley RA, Hosea TJ, Lockwood DJ, Taylor W (1978) Raman scattering at structural phase transitions. J Phys C: Solid State Phys 11:5065

    Google Scholar 

  • Yeganeh-Haeri A, Weidner DJ, Ito E (1989) Elasticity of MgSiO3 in the perovskite structure. Science 234:787–789

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durben, D.J., Wolf, G.H. & McMillan, P.F. Raman scattering study of the high-temperature vibrational properties and stability of CaGeO3 perovskite. Phys Chem Minerals 18, 215–223 (1991). https://doi.org/10.1007/BF00202573

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202573

Keywords

Navigation