Skip to main content
Log in

IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Mineral-specific IR absorption coefficients were calculated for natural and synthetic olivine, SiO2 polymorphs, and GeO2 with specific isolated OH point defects using quantitative data from independent techniques such as proton–proton scattering, confocal Raman spectroscopy, and secondary ion mass spectrometry. Moreover, we present a routine to detect OH traces in anisotropic minerals using Raman spectroscopy combined with the “Comparator Technique”. In case of olivine and the SiO2 system, it turns out that the magnitude of ε for one structure is independent of the type of OH point defect and therewith the peak position (quartz ε = 89,000 ± 15,000 \(\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}\)), but it varies as a function of structure (coesite ε = 214,000 ± 14,000 \(\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}\); stishovite ε = 485,000 ± 109,000 \(\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}\)). Evaluation of data from this study confirms that not using mineral-specific IR calibrations for the OH quantification in nominally anhydrous minerals leads to inaccurate estimations of OH concentrations, which constitute the basis for modeling the Earth’s deep water cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Parallelepipeds of olivine were additionally turned by 90°, and thereafter analyzed as per the defined procedure.

  2. Hydrogen interstitials; unambiguous defect association is uncertain to date (cf. Kronenberg 1994).

References

  • Arredondo EH, Rossman GR (2002) Feasibility of determining the quantitative OH content of garnets with Raman spectroscopy. Am Mineral 87:307–311

    Google Scholar 

  • Aubaud C, Withers AC, Hirschmann MM, Guan Y, Leshin LA, Mackwell SJ, Bell DR (2007) Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals. Am Mineral 92:811–828. doi:10.2138/am.2007.2248

    Article  Google Scholar 

  • Bai Q, Kohlstedt DL (1993) Effects of chemical environment on the solubitlity and incorporation mechanism for hydrogen in olivine. Phys Chem Miner 19:460–471. doi:10.1007/BF00203186

    Article  Google Scholar 

  • Behrens H, Roux J, Neuville DR, Siemann M (2006) Quantification of dissolved H2O in silicate glasses using confocal microRaman spectroscopy. Chem Geol 229:96–112. doi:10.1016/j.chemgeo.2006.01.014

    Article  Google Scholar 

  • Bell DR, Ihinger PD, Rossman GR (1995) Quantitative analysis of trace OH in garnet and pyroxene. Am Mineral 80:465–474

    Google Scholar 

  • Bell DR, Rossman GR, Maldener J, Endisch D, Rauch F (2003) Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J Geophys Res 108(B2):2105–2113. doi:10.1029/2001JB000679

    Article  Google Scholar 

  • Bell DR, Rossman GR, Moore RO (2004) Abundance and partitioning of OH in a high-pressure magmatic system: megacrysts from the Monastery kimberlite, South Africa. J Petrol 45(8):1539–1564. doi:10.1093/petrology/egh015

    Article  Google Scholar 

  • Beran A, Libowitzky E (2006) Water in natural mantle minerals. II: Olivine, garnet and accessory minerals. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals. Reviews in Mineralogy and Geochemistry, vol 62. Mineralogical Society of America, Chantilly, pp 169–191

  • Bolfan-Casanova N, Keppler H, Rubie DC (2000) Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle. Earth Planet Sci Lett 182:209–221. doi:10.1016/S0012-821X(00)00244-2

    Article  Google Scholar 

  • Boyd FR, England JL (1960) Apparatus for phase-equilibrium measurements at pressures up to 50 kbar and temperatures up to 1740°C. J Geophys Res 65:741–748. doi:10.1029/JZ065i002p00741

    Article  Google Scholar 

  • Bromiley GD, Bromiley FA, Bromiley DW (2006) On the mechanisms for H and Al incorporation in stishovite. Phys Chem Miner 33:613–621. doi:10.1007/s00269-006-0107-9

    Article  Google Scholar 

  • Brunner GO, Wondratschek H, Laves F (1961) Ultrarotuntersuchung über den Einbau von H in natürlichem Quarz. Z Elektrochem 65:735–750

    Google Scholar 

  • Chabiron A, Pironon J, Massare D (2004) Characterization of water in synthetic rhyolitic glasses and natural melt inclusions by Raman spectroscopy. Contrib Mineral Petrol 146:485–492. doi:10.1007/s00410-003-0510-x

    Article  Google Scholar 

  • Chakraborty D, Lehmann G (1976) On the structures and orientations of hydrogen defects in natural and synthetic quartz crystals. Phys Status Solidi 34:467–474. doi:10.1002/pssa.2210340206

    Article  Google Scholar 

  • Cho H, Rossman GR (1993) Single-crystal NMR studies of low-concentration hydrous species in minerals: grossular garnet. Am Mineral 78:1149–1164

    Google Scholar 

  • Deloule E, Paillat O, Pichavant M, Scaillet B (1995) Ion microprobe determination of water in silicate glasses: methods and applications. Chem Geol 125:19–28. doi:10.1016/0009-2541(95)00070-3

    Article  Google Scholar 

  • Deon F, Koch-Müller M, Hövelmann J, Rhede D, Thomas S-M (2009) Coupled boron and hydrogen incorporation in coesite. Eur J Mineral. doi:10.1127/0935-1221/2008/0020-1843

  • Di Muro A, Giordano D, Villemant B, Montagnac G, Romano C (2006a) Influence of composition and thermal history of volcanic glasses on water content determination by microRaman spectrometry. Appl Geochem 21:802–812. doi:10.1016/j.apgeochem.2006.02.009

    Article  Google Scholar 

  • Di Muro A, Villemant B, Montagnac G, Scaillet B, Reynard B (2006b) Quantification of water content and speciation in natural silicic glasses (phonolites, dacites, rhyolites) by confocal microRaman spectrometry. Geochim Cosmochim Acta 70:2868–2884. doi:10.1016/j.gca.2006.02.016

    Article  Google Scholar 

  • Everall NJ (2000) Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy. Appl Spectrosc 54:773–782. doi:10.1366/0003702001950382

    Article  Google Scholar 

  • Gibbs GV, Prewitt CT, Baldwin KJ (1977) A study of the structural chemistry of coesite. Z Kristallogr 145:108–123

    Article  Google Scholar 

  • Gibbs G, Cox D, Ross N (2004) A modeling of the structure and favourable H-docking sites and defects for the high-pressure silica polymorph stishovite. Phys Chem Miner 31:232–239. doi:10.1007/s00269-004-0379-x

    Article  Google Scholar 

  • Gose J, Reichart P, Dollinger G, Schmädicke E (2008) Water in natural olivine—determined by proton-proton scattering analysis. Am Mineral 93:1613–1619. doi:10.2138/am.2008.2835

    Article  Google Scholar 

  • Hammer VMF, Beran A, Endisch D, Rauch F (1996) OH concentrations in natural titanites determined by FTIR spectroscopy and nuclear reaction analysis. Eur J Mineral 8:281–288

    Google Scholar 

  • Hauri E, Wang J, Dixon JE, King PL, Mandeville C, Newman S (2002) SIMS analysis of volatiles in volcanic glasses. 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183:99–114. doi:10.1016/S0009-2541(01)00375-8

    Article  Google Scholar 

  • Hervig RL, Stanton TR, Williams P (1987) Ion probe microanalyses of hydrogen in glasses and minerals. EOS 68:441

    Google Scholar 

  • Hill RJ, Newton MD, Gibbs GV (1983) A crystal chemical study of stishovite. J Solid State Chem 47:185–200. doi:10.1016/0022-4596(83)90007-5

    Article  Google Scholar 

  • Hösch A (1999) Schwingungsspektroskopie von OH führenden Defekten in Granat. Dissertation, TU Berlin

    Google Scholar 

  • Huang X, Xu Y, Karato S (2005) Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434:746–749. doi:10.1038/nature03426

    Article  Google Scholar 

  • Johnson EA (2006) Water in nominally anhydrous crustal minerals: speciation, concentration, and geologic significance. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals. Reviews in Mineralogy and Geochemistry, vol 62. Mineralogical Society of America, Chantilly, pp 117–154

  • Johnson EA, Rossman GR (2003) The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am Mineral 88:901–911

    Google Scholar 

  • Karampelas S, Fritsch E, Zorba T, Paraskevopoulos KM, Sklavounos S (2005) Distinguishing natural from synthetic amethyst: the presence and shape of the 3595 cm−1 peak. Mineral Petrol 85:45–52. doi:10.1007/s00710-005-0101-9

    Article  Google Scholar 

  • Karato S (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347:272–273. doi:10.1038/347272a0

    Article  Google Scholar 

  • Kats A (1962) Hydrogen in alpha quartz. Phill Res Rep 17:133–279

    Google Scholar 

  • Kats A, Haven Y, Stevels JM (1962) Hydroxyl groups in α-quartz. Phys Chem Glasses 3:69–75

    Google Scholar 

  • Keppler H, Rauch F (2000) Water solubility in nominally anhydrous minerals measured by FTIR and 1H MAS NMR spectroscopy: the effect of sample preparation. Phys Chem Miner 27:371–376. doi:10.1007/s002699900070

    Article  Google Scholar 

  • Koch-Müller M, Langer K (1998) Quantitative IR spectroscopic determination of the component H2O in staurolite. Eur J Mineral 10:1267–1273

    Google Scholar 

  • Koch-Müller M, Langer K, Behrens H, Schuck G (1997) Crystal chemistry and infrared spectroscopy in the OH-stretching region of synthetic staurolites. Eur J Mineral 9:67–82

    Google Scholar 

  • Koch-Müller M, Fei Y, Hauri E, Liu Z (2001) Location and quantitative analysis of OH in coesite. Phys Chem Miner 28:693–705. doi:10.1007/s002690100195

    Article  Google Scholar 

  • Koch-Müller M, Dera P, Fei Y, Reno B, Sobolev N, Hauri E, Wysoczanski R (2003) OH in synthetic and natural coesite. Am Mineral 88:1436–1445

    Google Scholar 

  • Koch-Müller M, Matsyuk SS, Rhede D, Wirth R, Khisina N (2006) Hydroxyl in mantle olivine xenocrysts from the Udachnaya kimberlite pipe. Phys Chem Miner 33:276–287. doi:10.1007/s00269-006-0079-9

    Article  Google Scholar 

  • Koga K, Hauri E, Hirschmann M, Bell D (2003) Hydrogen concentration analyses using SIMS and FTIR: comparison and calibration for nominally anhydrous minerals. Geochem Geophys Geosyst 4:1019–1039. doi:10.1029/2002GC000378

    Article  Google Scholar 

  • Kohlrausch KWF (1943) Ramanspektren. Akademische Verlagsgesellschaft. Becher & Erler, Leipzig

  • Kohlstedt DL (2006) The role of water in high-temperature rock deformation. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals. Reviews in Mineralogy and Geochemistry, vol 62. Mineralogical Society of America, Chantilly, pp 377–396

  • Kohn SC (1996) Solubility of H2O in nominally anhydrous mantle minerals using 1H MAS NMR. Am Mineral 81:1523–1526

    Google Scholar 

  • Kronenberg AK (1994) Hydrogen speciation and chemical weakening of quartz. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Silica: physical behavior, geochemistry and materials applications, Reviews in Mineralogy, vol 29. Mineralogical Society of America, Washington, DC, pp 123-176

  • Kubicki JD, Sykes D, Rossman GR (1993) Calculated trends of OH infrared stretching vibrations with composition and structure in alumosilicate molecules. Phys Chem Miner 20:425–432

    Google Scholar 

  • Kurosawa M, Yurimoto H, Matsumoto K, Sueno S (1992) Hydrogen analysis of mantle olivine by secondary ion mass spectrometry. In: Xyono Y, Manghnani MH (eds) High-pressure research: appplication to earth and planetary sciences. Terra Sci, Tokyo, pp 283–287

    Google Scholar 

  • Lager GA, Armbruster T, Rotella FJ, Rossman GR (1989) OH substitution in garnets: X-ray and neutron diffraction, infrared, and geometric-modeling studies. Am Mineral 74:840–851

    Google Scholar 

  • Larson AC, von Dreele RB (1987) GSAS—general structure and analysis system. Technical report LA-UR-86-748. Los Alamos National Laboratory. Los Alamos

    Google Scholar 

  • Le Page Y, Donnay G (1976) Refinement of the crystal structure of low-quartz. Acta Crystallogr B 32:2456–2459. doi:10.1107/S0567740876007966

    Article  Google Scholar 

  • Li W, Lu R, Yang H, Prewitt CT, Fei Y (1997) Hydrogen in synthetic coesite crystals. EOS 78:736

    Google Scholar 

  • Libowitzky E (1999) Correlation of O-H stretching frequencies and O-H···O hydrogen bond lengths in minerals. Mh Chem 130:1047–1059

    Google Scholar 

  • Libowitzky E, Beran A (2004) IR spectroscopic characterisation of hydrous species in minerals. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy. EMU Notes in Mineralogy, vol 6. Eötvös University Press, Budapest, Hungary, pp 227–279

    Google Scholar 

  • Libowitzky E, Rossman GR (1996) Principles of quantitative absorbance measurements in anisotropic crystals. Phys Chem Miner 23:319–327. doi:10.1007/BF00199497

    Article  Google Scholar 

  • Libowitzky E, Rossman GR (1997) An IR absorption calibration for water in minerals. Am Mineral 82:1111–1115

    Google Scholar 

  • Litasov KD, Kagi H, Shatskiy A, Ohtani E, Lakshtanov DL, Bass JD, Ito E (2007) High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle. Earth Planet Sci Lett 262:620–634. doi:10.1016/j.epsl.2007.08.015

    Article  Google Scholar 

  • Lodziana Z, Parlinski K, Hafner J (2001) Ab initio studies of high-pressure transformations in GeO2. Phys Rev B 63:134106-1–134106-7

    Article  Google Scholar 

  • Mackwell SJ, Kohlstedt DL, Paterson MS (1985) The role of water in the deformation of olivine single crystals. J Geophys Res 90:11319–11333. doi:10.1029/JB090iB13p11319

    Article  Google Scholar 

  • Maldener J, Rauch F, Gavranic M, Beran A (2001) OH absorption coefficients of rutile and cassiterite deduced from nuclear reaction analysis and FTIR spectroscopy. Mineral Petrol 71:21–29. doi:10.1007/s007100170043

    Article  Google Scholar 

  • Maldener J, Hösch A, Langer K, Rauch F (2003) Hydrogen in some natural garnets studied by nuclear reaction analysis and vibrational spectroscopy. Phys Chem Miner 30:337–344. doi:10.1007/s00269-003-0321-7

    Article  Google Scholar 

  • Miller GH, Rossman GR, Harlow GE (1987) The natural occurrence of hydroxide in olivine. Phys Chem Miner 14:461–472. doi:10.1007/BF00628824

    Article  Google Scholar 

  • Moritz H (1999) Messung des Konzentrationsfeldes verdunstender binärer Mikropartikel mittels linearer Raman-Spektroskopie. Fortschrittsberichte, vol 3. VDI-Verlag, Düsseldorf

    Google Scholar 

  • Mosenfelder JL (2000) Pressure dependence of hydroxyl solubility in coesite. Phys Chem Miner 27:610–617. doi:10.1007/s002690000105

    Article  Google Scholar 

  • Panero W, Benedetti L, Jeanloz R (2003) Transport of water into the lower mantle: role of stishovite. J Geophys Res 108:2039–2048. doi:10.1029/2002JB002053

    Article  Google Scholar 

  • Pankrath R (1991) Polarized IR spectra of synthetic smoky quartz. Phys Chem Miner 17:681–689

    Article  Google Scholar 

  • Paterson MS (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Mineral (Paris) 105:20–29

    Google Scholar 

  • Pawley AR, McMillan PF, Holloway JR (1993) Hydrogen in stishovite, with implications for mantle water content. Science 261:1024–1026. doi:10.1126/science.261.5124.1024

    Article  Google Scholar 

  • Reichart P, Datzmann G, Hauptner A, Hertenberger R, Wild C, Dollinger G (2004) Three-dimensional hydrogen microscopy in diamond. Science 306:1537–1540. doi:10.1126/science.1102910

    Article  Google Scholar 

  • Rhede D, Wiedenbeck M (2006) SIMS quantification of very low hydrogen contents. Appl Surf Sci 252:7152–7154. doi:10.1016/j.apsusc.2006.02.245

    Article  Google Scholar 

  • Rossman GR (1988) Vibrational spectroscopy of hydrous components. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology. Reviews in Mineralogy, vol 18. Mineralogical Society of America, Washington, DC, pp 193–206

  • Rossman GR (2006) Analytical methods for measuring water in nominally anhydrous minerals. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals. Reviews in Mineralogy and Geochemistry, vol 62. Mineralogical Society of America, Chantilly, pp 1–28

  • Rossman GR, Aines RD (1991) The hydrous component in garnets: grossular-hydrogrossular. Am Mineral 76:1153–1164

    Google Scholar 

  • Rovetta MR, Blacic JD, Hervig RL, Holloway JD (1989) An experimental study of hydroxyl in quartz using infrared spectroscopy and ion microprobe techniques. J Geophys Res 94:5840–5850. doi:10.1029/JB094iB05p05840

    Article  Google Scholar 

  • Schabel W (2005) Inverse Mikro-Raman-Spektroskopie- Eine neue Messmethode zur Untersuchung lokaler Stofftransportvorgänge in dünnen Filmen, Folien und Membranen. Chem Ing Tech 77:1915–1926. doi:10.1002/cite.200500060

    Article  Google Scholar 

  • Severs MJ, Azbej T, Thomas JB, Mandeville CW, Bodnar RJ (2007) Experimental determination of H2O loss from melt inclusions during laboratory heating: evidence from Raman spectroscopy. Chem Geol 237:358–371. doi:10.1016/j.chemgeo.2006.07.008

    Article  Google Scholar 

  • Skoog DA, Leary JJ (1992) Principles of instrumental analysis. Saunders College Publishing, Florida

    Google Scholar 

  • Smyth JR, Swope RJ, Pawley AR (1995) H in rutile-type compounds: II. Crystal chemistry of Al substitution in H-bearing stishovite. Am Mineral 80:454–456

    Google Scholar 

  • Staats PA, Kopp OC (1974) Studies on the origin of the 3400 cm−1 region infrared bands of synthetic and natural α-quartz. J Phys Chem Solids 35:1029–1033. doi:10.1016/S0022-3697(74)80118-6

    Article  Google Scholar 

  • Strens RGJ (1974) The common chain, ribbon, and ring silicates. In: Farmer VC (ed) The infrared spectra of minerals, vol 4. Mineralogical Society, London, pp 305–330

    Google Scholar 

  • Sweeney RJ, Prozesky VM, Springhorn KA (1997) Use of elastic recoil detection analysis (ERDA) microbeam technique for the quantitative determination of hydrogen in materials and hydrogen partitioning between olivine and melt at high pressures. Geochim Cosmochim Acta 61:101–113. doi:10.1016/S0016-7037(96)00340-7

    Article  Google Scholar 

  • Sykes D, Rossman GR, Veblen DR, Grew ES (1994) Enhanced H and F incorporation in borian olivine. Am Mineral 79:904–908

    Google Scholar 

  • Thomas R (2000) Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy. Am Mineral 85:868–872

    Google Scholar 

  • Thomas R (2002) Determination of water contents in melt inclusions by laser Raman spectroscopy. Workshop-Short course on volcanic systems, geochemical and geophysical monitoring. In: De Vivo B, Bodnar RJ (eds) Proceedings of melt inclusions: methods, applications and problems. Napoli, Italy, pp 211–216

  • Thomas R, Davidson P (2006) Progress in the determination of water in glasses and melt inclusions with Raman spectroscopy: a short review. Z Geol Wiss Berlin 34:159–163

    Google Scholar 

  • Thomas R, Kamenetsky VS, Davidson P (2006) Laser Raman spectroscopic measurements of water in unexposed glass inclusions. Am Mineral 91:467–470. doi:10.2138/am.2006.2107

    Article  Google Scholar 

  • Thomas S-M, Thomas R, Davidson P, Reichart P, Koch-Müller M, Dollinger G (2008) Application of Raman spectroscopy to quantify trace water concentrations in glasses and garnets. Am Mineral 93:1550–1557. doi:10.2138/am.2008.2834

    Article  Google Scholar 

  • Tröger WE (1956) Tabellen zur optischen Bestimmung der gesteinsbildenden Minerale, Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller) Stuttgart

  • Wang D, Mookherjee M, Xu Y, Karato S (2006) The effect of hydrogen on the electrical conductivity in olivine. Nature 443:977–980. doi:10.1038/nature05256

    Article  Google Scholar 

  • Wegdén M, Kristiansson P, Skogby H, Auzelyte V, Elfman M, Malmqvist KG, Nilsson C, Pallon J, Shariff A (2005) Hydrogen depth profiling by p-p scattering in nominally anhydrous minerals. Nucl Instrum Methods Phys Res B 231:524–529. doi:10.1016/j.nimb.2005.01.111

    Article  Google Scholar 

  • Wiedenbeck M, Rhede D, Lieckefett R, Witzki H (2004) Cryogenic SIMS and its applications in the Earth sciences. Appl Surf Sci 231–232:888–892. doi:10.1016/j.apsusc.2004.03.159

    Article  Google Scholar 

  • Wilson EB Jr, Decius JD, Cross PC (1955) Molecular vibrations. The theory of infrared and Raman vibrational spectra. Dover Publications, New York, 388 pp

    Google Scholar 

  • Wirth R (2004) Focused Ion Beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876. doi:10.1127/0935-1221/2004/0016-0863

    Article  Google Scholar 

  • Yurimoto H, Kurosawa M, Sueno S (1989) Hydrogen analysis in quartz crystals and quartz glasses by secondary ion mass spectrometry. Geochim Cosmochim Acta 53:751–755. doi:10.1016/0016-7037(89)90018-5

    Article  Google Scholar 

  • Zajacz Z, Halter W, Malfait WJ, Bachmann O, Bodnar RJ, Hirschmann MM, Mandeville CW, Morizet Y, Muntener O, Ulmer P, Webster JD (2005) A composition-independent quantitative determination of the water content in silicate glasses and silicate melt inclusions by confocal Raman spectroscopy. Contrib Mineral Petrol 150:631–642. doi:10.1007/s00410-005-0040-9

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank B. Wunder, G. Berger, M. Kreplin, R. Schulz, H. Steigert, U. Schade and M. Schmidt for help with the experiments, sample preparation, X-ray diffraction, and synchrotron IR measurements. C. Schmidt and W. Heinrich are thanked for helpful comments and discussions. We are grateful to W. van Westrenen, who kindly provided sample WIM04. This project was supported by the Maier-Leibnitz-Laboratorium of LMU and TU München. Reviews of M. Rieder, M. M. Hirschmann and E. Libowitzky are greatly appreciated. Finally, thanks to C. R. Bina for help with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia-Monique Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, SM., Koch-Müller, M., Reichart, P. et al. IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs. Phys Chem Minerals 36, 489–509 (2009). https://doi.org/10.1007/s00269-009-0295-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-009-0295-1

Keywords

Navigation