Skip to main content
Log in

Polarized IR spectra of synthetic smoky quartz

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Polarized IR spectra of planeparallel (0001) plates of synthetic smoky quartz, with E rotating around [0001], show that the absorption figures of OH related absorption bands at 3380 (room temperature), 3365 and 3305 cm−1 (liquid nitrogen temperature, -196° C) are strongly anisotropic and violate the trigonal symmetry of low quartz. This effect is correlated with a non-uniform substitution of Si by Al on the three symmetrically equivalent Si sites, as revealed by EPR measurements. Random distribution of Al over the three Si sites, obtained by dry annealing of the samples in air, yields isotropic absorption figures in the (0001) plates. It is thus experimentally evident that the absorption bands at 3380, 3365 and 3305cm−1 are caused by the OH stretching vibrations coupled with Al substituting for Si. For each experimentally determined integral absorption coefficient of the three absorption bands a theoretical absorption coefficient was calculated, based on the symmetry of low quartz and the given Al distribution. This was done for various orientations of the OH dipoles with respect to the a axes of low quartz. By comparing the experimentally determined and calculated absorption coefficients, the orientation of the corresponding OH dipoles with respect to the a axes could be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aines RD, Rossman GR (1984) Water in minerals? A peak in the infrared. J Geophys Res 89:4059–4071

    Google Scholar 

  • Aines RD, Kirby SH, Rossman GH (1984) Hydrogen Speciation in Synthetic Quartz. Phys Chem Minerals 11:204–212

    Google Scholar 

  • Bambauer HU (1961) Spurenelementgehalte und γ-Farbzentren in Quarzen aus Zerklüften der Schweizer Alpen. Schweiz Mineral Petrogr Mitt 41:335–369

    Google Scholar 

  • Barry TI, McNamara P, Moore WJ (1965) Paramagnetic Resonance and Optical properties of amethyst. J Chem Phys 42:2599–2606

    Google Scholar 

  • Brown RN, Kahan A (1975) Optical absorption of irradiated quartz in the near I.R. J Phys. Chem Solids 36:467–476

    Google Scholar 

  • Brunner G, Wondratschek H, Laves F (1961) Ultrarotuntersuchungen über den Einbau von H in natürlichem Quarz. Z Elektrochem, Ber Bunsenges Phys Chem 65:735–750

    Google Scholar 

  • Bulka GR, Vinokurov VM, Nizamutdinov NM, Hasanova NM (1980) Dissymmetrization of Crystals: Theory and Experiment. Phys Chem Minerals 6:283–293

    Google Scholar 

  • Chakraborty D, Lehmann G (1976) On the structures and orientations of hydrogen defects in natural and synthetic quartz crystals. Phys Status Solidi (a) 34:467–474

    Google Scholar 

  • Cox RT (1976) ESR of an S = 2 centre in amethyst quartz and its possible identification as the d4 ion Fe4+. J Phys Chem, Solid State Phys 9:3355–3361

    Google Scholar 

  • Dodd DM, Fraser DB (1965) The 3000–3900 cm−1 absorption bands and anelasticity in crystalline α-quartz. J Phys Chem Solids 26:673–686

    Google Scholar 

  • Donnay JDH, LePage YL (1978) The Vicissitudes of the Low-Quartz Crystal Setting or the Pitfalls of Enantiomorphism. Acta Crystallogr A34:584–594

    Google Scholar 

  • Geschwind S, Remeika J (1961) Paramagnetic Resonance of Gd3+ in Al2O3. Phys Rev 122:757–761

    Google Scholar 

  • Griffiths JHE, Owen J, Ward IM (1954) Paramagnetic resonance in neutron-irradiated diamond and smoky quartz. Nature 173:439–442

    Google Scholar 

  • Griffiths JHE, Owen J, Ward IM (1955) Magnetic resonance in irradiated diamond and quartz. Report of the Bristol Conference — Defects in Crystalline solids. Phys Soc Lond 81–87

  • Halliburton LE, Koumvakalis ME, Markes ME, Martin JJ (1981) Radiation effects in crystalline SiO2: The role of aluminium. J Appl Phys 52:3565–3574

    Google Scholar 

  • Kats A (1962) Hydrogen in alpha-quartz. Philips Res Rep 17:133–195, 301–279

    Google Scholar 

  • Krohmer P (1968) IR-Spektroskopie mit polarisiertem Licht. Analysentechnische Berichte 14

  • Kronenberg AK, Kirby SH, Aines RD, Rossman GR (1986) Solubility and diffusional uptake of hydrogen in quartz at high pressures: Implications for hydrolytic weakening. J Geophys Res 91:723–741

    Google Scholar 

  • Lehmann G (1987) Defects in minerals. Cryst Lattice Defects 14:307–317

    Google Scholar 

  • LePage Y, Donnay G (1976) Refinement of the Crystal Structure of Low-Quartz. Acta Crystallogr B32:2456–2459

    Google Scholar 

  • Lipson HG, Kahan A (1985) Infrared characterization of aluminium and hydrogen defect centers in irradiated quartz. J Appl Phys 58:963–970

    Google Scholar 

  • Mackey JH (1963) EPR study of impurity-related colour centers in Germanium-doped quartz. J Chem Phys 39:74–83

    Google Scholar 

  • Mombourquette MJ, Weil JA (1985) Ab initio self-consistent-field molecular-orbital calculations on AlO4 centres in alpha-quartz. II. Can J Phys 63:1282–1293

    Google Scholar 

  • Nuttall RHD, Weil JA (1981) The magnetic properties of the oxygen-hole aluminium centers in crystalline SiO2. I. [AlO4]∘. Can J Phys 59:1996–1708

    Google Scholar 

  • O'Brien MCM (1955) The structure of the colour centres in smoky quartz. Proc R Soc A231:404–414

    Google Scholar 

  • O'Brien MCM, Pryce MHL (1955) Paramagnetic resonance in irradialed diamond and quartz: Interpretation. Report of the Bristol Conference — Defects in Crystalline Solids. Phys Soc London 88–91

  • Pankrath R (1988) Spurenelementeinbau in Tief-Quarz als Funktion der Wachstumsbedingungen und Umprägungen unter trockenen und hydrothermalen Bedingungen. Dissertation Ruhr-Universität Bochum

  • Paterson MS (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Mineral 105:20–29

    Google Scholar 

  • Rumyantsev V, Novozhilov A (1980) Dependence on concentration of aluminium-centers and anomalous pleochroism on certain crystallization parameters in synthetic quartz. Sov Phys Crystallography 25:75–78

    Google Scholar 

  • Schnadt R, Schneider J (1970) The electronic structure of the trapped hole center in smoky quartz. Phys Kondens Mater 11:19–42

    Google Scholar 

  • Sibley WA, Martin JJ, Wintersgill MC, Brown JD (1979) The effect of irradiation on the OH infrared absorption of quartz crystals. J Appl Phys 50:5449–5452

    Google Scholar 

  • Siebers FB (1986) Inhomogene Verteilung von Verunreinigungen in gezüchteten und natürlichen Quarzen als Funktion der Wachstumsbedingungen und ihr Einfluß auf kristallphysikalische Eigenschaften. Dissertation Ruhr-Universität Bochum

  • Weil JA (1975) The aluminium centers in alpha-quartz. Rad Effects 25:261–265

    Google Scholar 

  • Weil JA (1984) A Review of Electronic Spin Spectroscopy and Its Application to the Study of Paramagnetic Defects in Crystalline Quartz. Phys Chem Minerals 10:149–165

    Google Scholar 

  • Wertz JE, Bolton JR (1972) Electron spin resonance. McGraw-Hill, New York

    Google Scholar 

  • Wolfe R, Sturge MD, Merritt FR, VanUitert LG (1971) Faced-Related Site selectivity for Rare-Earth Ions in Yttrium Aluminium Garnet. Phys Rev Lett 26:1570

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pankrath, R. Polarized IR spectra of synthetic smoky quartz. Phys Chem Minerals 17, 681–689 (1991). https://doi.org/10.1007/BF00202238

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202238

Keywords

Navigation