Skip to main content

Advertisement

Log in

Balkanized Research in Ecological Engineering Revealed by a Bibliometric Analysis of Earthworms and Ecosystem Services

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Energy crisis, climate changes, and biodiversity losses have reinforced the drive for more ecologically-based approaches for environmental management. Such approaches are characterized by the use of organisms rather than energy-consuming technologies. Although earthworms are believed to be potentially useful organisms for managing ecosystem services, there is actually no quantification of such a trend in literature. This bibliometric analysis aimed to measure the evolution of the association of “earthworms” and other terms such as ecosystem services (primary production, nutrient cycling, carbon sequestration, soil structure, and pollution remediation), “ecological engineering” or “biodiversity,” to assess their convergence or divergence through time. In this aim, we calculated the similarity index, an indicator of the paradigmatic proximity defined in applied epistemology, for each year between 1900 and 2009. We documented the scientific fields and the geographical origins of the studies, as well as the land uses, and compare these characteristics with a 25 years old review on earthworm management. The association of earthworm related keywords with ecosystem services related keywords was increasing with time, reflecting the growing interest in earthworm use in biodiversity and ecosystem services management. Conversely, no significant increase in the association between earthworms and disciplines such as ecological engineering or restoration ecology was observed. This demonstrated that general ecologically-based approaches have yet to emerge and that there is little exchange of knowledge, methods or concepts among balkanized application realms. Nevertheless, there is a strong need for crossing the frontiers between fields of application and for developing an umbrella discipline to provide a framework for the use of organisms to manage ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baker G (2004) Managing earthworms as a resource in Australian pastures. In: Edwards CA (ed) Earthworm ecology, 2nd edn. CRC Press, Boca Raton, pp 263–286

    Chapter  Google Scholar 

  • Baker GH, Brown G, Butt KR, Curry JP, Scullion J (2006) Introduced earthworms in agricultural and reclaimed land: their ecology and influences on soil properties, plant production and other soil biota. Biol Invasions 8:1301–1316

    Article  Google Scholar 

  • Barot S, Ugolini A, Bekkal Brikci F (2007) Nutrient cycling efficiency explains the long-term effect of ecosystem engineers on primary production. Funct Ecol 21:1–10

    Article  Google Scholar 

  • Barot S, Lata JC, Lacroix G (2012) Meeting the relational challenge of ecological engineering within ecological sciences. Ecol Eng 45:13–23

    Article  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285

    Article  Google Scholar 

  • Bastardie F, Capowiez Y, Cluzeau D (2003a) Burrowing behaviour of radio-labelled earthworms revealed by analysis of 3D-trajectories in artificial soil cores. Pedobiologia 47:554–559

    Google Scholar 

  • Bastardie F, Capowiez Y, de Dreuzy J-R, Cluzeau D (2003b) X-ray tomographic and hydraulic characterization of burrowing by three earthworm species in repacked soil cores. Appl Soil Ecol 24:3–16

    Article  Google Scholar 

  • Bastardie F, Ruy S, Cluzeau D (2005) Assessment of earthworm contribution to soil hydrology: a laboratory method to measure water diffusion through burrow walls. Biol Fertil Soils 41:124–128

    Article  Google Scholar 

  • Bernard L, Chapuis-Lardy L, Razafimbelo T, Razafindrakoto M, Pablo AL, Legname E, Poulain J, Bruls T, O’Donohue M, Brauman A, Chotte JL, Blanchart E (2012) Endogenic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME J 6:213–222

    Article  CAS  Google Scholar 

  • Blouin M, Aranda Delgado E, Baker G, Brussaard L, Butt K, Dai J, Dendooven L, Hodson M, Peres G, Tondoh J, Cluzeau D, Brun J-J (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64(2):161–182

    Article  Google Scholar 

  • Brown GG, Pashanasi B, Villenave C, Patron JC, Senapati BK, Giri S, Barois I, Lavelle P, Blanchart E, Blakemore RJ, Spain AV, Boyer J (1999) Effects of earthworms on plant production in the tropics. In: Lavelle P, Brussaard L, Hendrix P (eds) Earthworm management in tropical agroecosystems. CAB International, Wallingford, pp 87–148

    Google Scholar 

  • Brun JJ, Cluzeau D, Trehen P, Bouché MB (1987) Biostimulation: perspectives et limites de l’amélioration biologique des sols par stimulation ou introduction d’espèces lombriciennes. Revue d’Ecologie et Biologie des Sols 24:685–701

    Google Scholar 

  • Brussaard L (2012) Ecosystem services provided by the soil biota. In: Wall DH, Bardgett RD, Behan-Pelletier V et al (eds) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 45–58

    Google Scholar 

  • Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agr Ecosyst Environ 121:233–244

    Article  Google Scholar 

  • Butt KR, Briones MJI, Lowe CN (2009) Is tagging with visual implant elastomer a reliable technique for marking earthworms? Perq Agro Brasil 44:969–974

    Article  Google Scholar 

  • Byers JE, Cuddington K, Jones CG, Talley TS, Hastings A, Lambrinos JG, Crooks JA, Wilson WG (2006) Using ecosystem engineers to restore ecological systems. Trend Ecol Evol 21:493–500

    Article  Google Scholar 

  • Callon M, Courtial J, Laville F (1991) Co-word analysis as a tool for describing the network of interaction between basic and technological research: The case of polymer chemistry. Scientometrics 22:155–205

    Article  Google Scholar 

  • Capowiez Y, Pierret A, Daniel O, Monestiez P, Kretzschmar A (1998) 3D skeleton reconstructions of natural earthworm burrow systems using CAT scan images of soil cores. Biol Fertil Soils 27:51–59

    Article  Google Scholar 

  • Capowiez Y, Renault P, Belzunces L (2001) Three-dimensional trajectories of 60Co-labelled earthworms in artificial cores of soil. Eur J Soil Sci 52:365–375

    Article  Google Scholar 

  • Chavalarias D, Cointet J-P (2008) Bottom-up scientific field detection for dynamical and hierarchical science mapping, methodology and case study. Scientometrics 75:37–50

    Article  Google Scholar 

  • Chavalarias D, Cointet J-P (2009) The reconstruction of science phylogeny. arXiv:09043154v1 [physicssoc-ph]

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Daily GC (1997) What are ecosystem services? In: Daily GC (ed) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, D.C, pp 1–10

    Google Scholar 

  • Darwin C (1881) The formation of vegetable mould through the action of worms, with observations on their habits. John Murray, London

    Google Scholar 

  • Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69:1858–1868

    Article  Google Scholar 

  • Dupont L, Lazrek F, Porco D, King RA, Rougerie R, Symondson WOC, Livet A, Richard B, Decaens T, Butt KR, Mathieu J (2011) New insight into the genetic structure of the Allolobophora chlorotica aggregate in Europe using microsatellite and mitochondrial data. Pedobiologia 54:217–224

    Article  Google Scholar 

  • Eisenhauer N, Scheu S (2008) Earthworms as drivers of the competition between grasses and legumes. Soil Biol Biochem 40:2650–2659

    Article  CAS  Google Scholar 

  • Eisenhauer N, Milcu A, Nitschke N, Sabais ACW, Scherber C, Scheu S (2009) Earthworm and belowground competition effects on plant productivity in a plant diversity gradient. Oecologia 161:291–301

    Article  Google Scholar 

  • Feller C, Brown GG, Blanchart E, Deleporte P, Chernyanskii SS (2003) Charles Darwin, earthworms and the natural sciences: various lessons from past to future. Agric Ecosyst Environ 99:29–49

    Article  Google Scholar 

  • Gosselin F (2011) From ecology to ecological engineering: mainly through theory and concepts? Procedia Environ Sci 9:60–63

    Article  Google Scholar 

  • Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sorensen SJ, Baath E, Bloem J, de Ruiter PC, Dolfing J, Nicolardot B (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos 90:279–294

    Article  Google Scholar 

  • Hale CM (2008) Evidence for human-mediated dispersal of exotic earthworms: support for exploring strategies to limit further spread. Mol Ecol 17:1165–1167

    Article  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127

    Article  CAS  Google Scholar 

  • Iglesias Briones MJ, Morán P, Posada D (2009) Are the sexual, somatic and genetic characters enough to solve nomenclatural problems in lumbricid taxonomy? Soil Biol Biochem 41:2257–2271

    Article  CAS  Google Scholar 

  • James SW, Davidson SK (2012) Molecular phylogeny of earthworms (Annelida:Crassiclitellata) based on 28S, 18S and 16S gene sequences. Invertebr Syst 26:213–229

    Article  Google Scholar 

  • Jegou D, Hallaire V, Cluzeau D, Trehen P (1999) Characterization of the burrow system of the earthworms Lumbricus terrestris and Aporrectodea giardi using X-ray computed tomography and image analysis. Biol Fertil Soils 29:314–318

    Article  Google Scholar 

  • Jegou D, Schrader S, Diestel H, Cluzeau D (2001) Morphological, physical and biochemical characteristics of burrow walls formed by earthworms. Appl Soil Ecol 17(2):165–174

    Article  Google Scholar 

  • Jones CG (2012) Grand challenges for the future of ecological engineering. Ecol Eng 45:80–84

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Joschko M, Graff O, Müller PC, Kotzke K, Lindner P, Pretschner DP, Larink O (1991) A non-destructive method for the morphological assessment of earthworm burrow systems in three dimensions by X-ray computed tomography. Biol Fertil Soils 11:88–92

    Article  Google Scholar 

  • Laossi K-R, Noguera DC, Bartolomé-Lasa A, Mathieu J, Blouin M, Barot S (2009) Effects of endogeic and anecic earthworms on the competition between four annual plants and their relative reproduction potential. Soil Biol Biochem 41:1668–1673

    Article  CAS  Google Scholar 

  • Laossi K-R, Noguera DC, Decäens T, Barot S (2011) The effects of earthworms on the demography of annual plant assemblages in a long-term mesocosm experiment. Pedobiologia 54(2):127–132

    Article  Google Scholar 

  • Lavelle P, Spain AV (2001) Soil Ecology. Kluwer Scientific Publications, Amsterdam

    Google Scholar 

  • Lavelle P, Charpentier F, Gilot C, Rossi JP, Derouard L, Pashanasi B, Andre J, Ponge JF, Bernier N (2004) Effects of earthworms on soil organic matter and nutrient dynamics at a landscape scale over decades. In: Edwards CA (ed) Earthworm ecology. CRC Press, Boca Raton

    Google Scholar 

  • Lavelle P, Decaens T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi J-P (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:3–15

    Article  Google Scholar 

  • Loranger G, Ponge JF, Blanchart E, Lavelle P (1998) Impact of earthworms on the diversity of microarthropods in a vertisol (Martinique). Biol Fertil Soils 27:21–26

    Article  Google Scholar 

  • Lubbers IM, van Groenigen KJ, Fonte SJ, Six J, Brussaard L, van Groenigen JW (2013) Greenhouse gas emissions from soils increased by earthworms. Nat Clim Change 3:187–194

    Article  CAS  Google Scholar 

  • Margles SW, Peterson RB, Ervin J, Kaplin BA (2010) Conservation without borders: building communication and action across disciplinary boundaries for effective conservation. Environ Manag 45:1–4

    Article  Google Scholar 

  • Mathieu J, Barot S, Blouin M, Caro G, Decaëns T, Dubs F, Dupont L, Jouquet P, Nai P (2010) Habitat quality, conspecific density, and habitat pre-use can affect earthworm dispersal behaviour. Soil Biol Biochem 42:203–209

    Article  CAS  Google Scholar 

  • McCann KS (2000) The diversity–stability debate. Nature 405:228–233

    Article  CAS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystem and human well-being: synthesis. World Resources Institute, Washington, D.C

    Google Scholar 

  • Monard C, Vandenkoornhuyse P, Le Bot B, Binet F (2011) Relationship between bacterial diversity and function under biotic control: the soil pesticide degraders as a case study. ISME J 5:1048–1056

    Article  CAS  Google Scholar 

  • Muller AK, Westergaard K, Christensen S, Sorensen SJ (2002) The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol 44:49–58

    Article  CAS  Google Scholar 

  • Naeem S (1998) Species redundancy and ecosystem reliability. Conserv Biol 12:39–45

    Article  Google Scholar 

  • Northwest Marine Technology (2012) http://www.nmt.us/products/vie/vie.shtml. Accessed Oct 2012

  • Nuutinen V, Butt KR, Jauhiainen L (2011) Field margins and management affect settlement and spread of an introduced dew-worm (Lumbricus terrestris L.) population. Pedobiologia 54:S167–S172

    Article  Google Scholar 

  • Odum HT (1962) Ecological tools and their use. Man and the ecosystem. In: Waggoner PE, Ovington JD (eds) Conference on the suburban forest and ecology, Lockwood. The Connecticut Agricultural Experiment Station, New Haven, pp 57–75

    Google Scholar 

  • Power ME, Mills SL (1995) The keystone cops meet in Hilo. Trend Ecol Evol 10:182–184

    Article  CAS  Google Scholar 

  • Scheu S (2003) Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia 47:846–856

    Google Scholar 

  • Sizmur T, Hodson ME (2009) Do earthworms impact metal mobility and availability in soil? A review. Environ Pollut 157:1981–1989

    Article  CAS  Google Scholar 

  • Stromberger ME, Keith AM, Schmidt O (2012) Distinct microbial and faunal communities and translocated carbon in Lumbricus terrestris drilospheres. Soil Biol Biochem 46:155–162

    Article  CAS  Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720

    Article  CAS  Google Scholar 

  • Vihervaara P, Ronka M, Walls M (2010) Trends in Ecosystem Service Research: early steps and current drivers. Ambio 39:314–324

    Article  Google Scholar 

  • Wurst S, Gebhardt K, Rillig MC (2011) Independent effects of Arbuscular mycorrhiza and earthworms on plant diversity and newcomer plant establishment. J Veg Sci 22:1021–1030

    Article  Google Scholar 

  • Ying XM, Liu M, Dou WH (2001) User-interested-keywords set discovery using rough sets for intelligent information agents. In: 2001 International Conferences on Info-Tech and Info-Net Proceedings, Conference a-G: Info-Tech & Info-Net: a key to Better Life. IEEE, New York

Download references

Acknowledgments

This work has been funded by the Ingénierie Ecologique program of the CNRS/CEMAGREF French institutions. We thank all the participants of the workshop “earthworm biostimulation”, held in Grenoble (France) in 2009, for their help in identifying relevant ecosystem services: Eduardo Aranda Delgado, Geoff Baker, Lijbert Brussaard, Kevin Butt, Jun Dai, Luc Dendooven, Mark E. Hodson, Guénola Pérès and Jérôme Tondoh. We also thank Naoise Nunan for the improvement of English writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Blouin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blouin, M., Sery, N., Cluzeau, D. et al. Balkanized Research in Ecological Engineering Revealed by a Bibliometric Analysis of Earthworms and Ecosystem Services. Environmental Management 52, 309–320 (2013). https://doi.org/10.1007/s00267-013-0079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-013-0079-8

Keywords

Navigation