Skip to main content

Advertisement

Log in

Influence of Age and Body Mass Index on the Yield and Proliferation Capacity of Adipose-Derived Stem Cells

  • Original Article
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Adipose tissue is commonly used for volume restoration. It is also a source of adipose-derived stem cells (ASCs), easy to obtain in large quantities by liposuction or resection techniques. The aim of this study was to determine the influence of body mass index (BMI) and age on the number (yield) and proliferation capacity of ASCs.

Methods

A prospective study was conducted in 42 women. They were divided into two groups: age ≤ 40 or >40 and BMI ≤ 25 or >25. Fat tissue was harvested via manual lipoaspiration always from the abdominal region. After centrifugation in the OR, the harvested fat (100 cc) was sent to the laboratory for isolation and cultivation of ASCs. The yield of viable ASCs was evaluated by the trypan blue exclusion test. Viable ASCs were cultured and their proliferation capacity was evaluated by the growth kinetics assay. Results were statistically analyzed.

Results

The average cell yield was 0.380 × 106/ml. Cell yield and proliferation capacity did not show statistically significant correlation to the age and BMI of patients, with regression lines showing null correlation. There was no significant difference between the cell yield and proliferation capacity between the different groups.

Conclusion

The results from this study suggest that there is no statistically significant correlation between ASC yield and proliferation capacity and age and BMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aust L, Devlin B, Foster SJ, Halvorsen YDC, Hicok K, du Laney T, Sen A, Willingmyre GD, Gimble JM (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6:7–14

    Article  PubMed  CAS  Google Scholar 

  2. Bakker AH, Van Dielen FM, Greve JW, Adam JA, Buurman WA (2004) Preadipocyte number in omental and subcutaneous adipose tissue of obese individuals. Obes Res 12:488–498

    Article  PubMed  Google Scholar 

  3. Beahm EK, Walton RL, Patrick CW Jr (2003) Progress in adipose tissue construct development. Clin Plast Surg 30:547–558

    Article  PubMed  Google Scholar 

  4. Brown SA, Levi B, Lequex C, Wong VW, Mojallal A, Longaker MT (2010) Basic science review on adipose tissue for clinicians. Plast Reconstr Surg 126:1936–1946

    Article  PubMed  CAS  Google Scholar 

  5. Coleman SR (1997) Facial recontouring with lipostructure. Clin Plast Surg 24:347–367

    PubMed  CAS  Google Scholar 

  6. Mojallal A, Lequeux C, Shipkov C, Breton P, Foyatier JL, Braye F, Damour O (2009) Improvement of skin quality after fat grafting: clinical observation and an animal study. Plast Reconstr Surg 124:765–774

    Article  PubMed  CAS  Google Scholar 

  7. DiMatteo CA, Golesorkhi N, Fischer LJ, Wrigley CW, McIlhenny SE, Tulenko TE, Shapiro I, Carabasi RA, Lombardi JV, Larson RA, DiMuzio PJ (2006) Featured research: novel approaches to PVD: isolation of adipose-derived stem cells in patients with vascular disease. Circulation Supplement II 114(18):446

    Google Scholar 

  8. Elwood M (2007) Critical appraisal of epidemiological studies and clinical trials, 3rd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  9. Faustini M, Bucco M, Chlapanidas T, Lucconi G, Marazzi M, Tosca MC, Lucconi G, Marazzi M, Villani S, Ferretti VV, Vigo D, Torre ML (2010) Nonexpanded mesenchymal stem cells for regenerative medicine: yield in stromal vascular fraction from adipose tissues. Tissue Eng Part C Methods 16:1515–1521

    Article  PubMed  Google Scholar 

  10. Flynn LE (2010) The use of decellularized adipose tissue to provide an inductive microenvironment for the ad adipogenic differentiation of human adipose-derived stem cells. Biomaterials 31:4715–4724

    Article  PubMed  CAS  Google Scholar 

  11. Foyatier JL, Mojallal A, Voulliaume D, Comparin JP (2004) Clinical evaluation of structural fat tissue graft (Lipostructure) in volumetric facial restoration with face-lift: about 100 cases. Ann Chir Plast Esthet 49:437–455

    Article  PubMed  Google Scholar 

  12. Fraser JK, Wulur I, Alfonso Z, Zhu M, Wheeler ES (2007) Differences in stem and progenitor cell yield indifferent subcutaneous adipose tissue depots. Cytotherapy 9:459–467

    Article  PubMed  CAS  Google Scholar 

  13. Girolamo LD, Lopa S, Arrigoni E, Sartori MF, Preis FW, Brini AT (2009) Human adipose-derived stem cells isolated from young and elderly women: their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. Cytotherapy 11:1–11

    Article  Google Scholar 

  14. Gomillion CT, Burg JL (2006) Stem cells and adipose tissue engineering. Biomaterials 27:6052–6063

    Article  PubMed  CAS  Google Scholar 

  15. Gonzalez AM, Lobocki C, Kelly CP, Jackson IT (2007) An alternative method for harvest and processing fat grafts: an in vitro study of cell viability and survival. Plast Reconstr Surg 120:285–294

    Article  PubMed  CAS  Google Scholar 

  16. Gutovski KA (2009) Current applications and safety of autologous fat grafts: a report of the ASPS fat graft task force. Plast Reconstr Surg 124:272–280

    Article  Google Scholar 

  17. Harris LJ, Zhang P, Abdollahi H, Tarola NA, DiMatteo CA, McIlhenny SE, Tulenko TE, DiMuzio PJ (2010) Availability of adipose-derived stem cells in patients undergoing vascular surgical procedures. J Surg Res 163:e105–e112

    Article  PubMed  Google Scholar 

  18. Hong L, Peptan I, Clark P, Mao JJ (2005) Ex vivo adipose tissue engineering by human marrow stroma cell seeded gelatin sponge. Ann Biomed Eng 33:511–517

    Article  PubMed  Google Scholar 

  19. Hong SJ, Traktuev DO, March KL (2010) Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant 15:86–91

    Article  PubMed  Google Scholar 

  20. Kaji EH, Leiden JM (2001) Gene and stem cell therapies. JAMA 285:545–550

    Article  PubMed  CAS  Google Scholar 

  21. Karacalar A, Orak I, Kaplan S, Yildirim S (2004) No-touch technique for autologous fat harvesting. Aesthet Plast Surg 28:158–166

    Article  Google Scholar 

  22. Kaufman MR, Miller TA, Huang C, Roostaeian J, Wasson KL, Ashley RK, Bradley JP (2007) Autologous fat transfer for facial recontouring: is there science behind the art? Plast Reconstr Surg 119:2287–2296

    Article  PubMed  CAS  Google Scholar 

  23. Keck M, Zeyda M, Gollinger K, Burjak S, KAmolz LP, Frey M, Stulnig TM (2010) Local anesthetics have a major impact on viability of preadipocytes and their differentiation into adipocytes. Plast Reconstr Surg 126:1500–1505

    Article  PubMed  CAS  Google Scholar 

  24. Khan WS, Adesida AB, Tew SR, Andrew JG, Hardingham TE (2009) The epitope characterisation and the osteogenic differentiation potential of human fat pad-derived stem cells is maintained with aging in later life. Injury 40:150–157

    Article  PubMed  CAS  Google Scholar 

  25. Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K et al (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14:311–324

    Article  PubMed  CAS  Google Scholar 

  26. McKelvey-Martin VJ, Green MH, Schmezer P, Pool-Zobel BL, De Méo MP, Collins A (1993) The single cell gel electrophoresis assay (comet assay): a European review. Mutat Res 288:47–63

    Article  PubMed  CAS  Google Scholar 

  27. Mojallal A, Auxenfans C, Lequeux C, Braye F, Damour O (2008) Influence of negative pressure when harvesting adipose tissue on cell yield of the stromal-vascular fraction. Biomed Mater Eng 18:193–197

    PubMed  CAS  Google Scholar 

  28. Coleman SR (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118:108S–120S

    Article  PubMed  CAS  Google Scholar 

  29. Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23:277–282

    Article  PubMed  CAS  Google Scholar 

  30. Ozsoy Z, Kul Z, Bilir A (2006) The role of cannula diameter in improved adipocyte viability: a quantitative analysis. Aesthet Surg J 26:287–292

    Article  PubMed  CAS  Google Scholar 

  31. Padoin AV, Braga-Silva J, Martins P, Rezende K, Rezende AR, Grechi B, Gehlen D, Machado DC (2008) Sources of processed lipoaspirate cells: influence of donor site on cell concentration. Plast Reconstr Surg 122:614–618

    Article  PubMed  CAS  Google Scholar 

  32. Rigotti G, Marchi A, Galie M, Baroni G, Benati D, Krampera M, Pasini A, Sbarbati A (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119:1409–1422

    Article  PubMed  CAS  Google Scholar 

  33. Rodriguez AM, Elabd C, Delteil F, Astier J, Vernochet C, Saint-Marc P et al (2004) Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochem Biophys Res Commun 315:255–263

    Article  PubMed  CAS  Google Scholar 

  34. Rohrich RJ, Sorokin ES, Brown SA (2004) In search of improved fat transfer viability: a quantitative analysis of the role of centrifugation and harvest site. Plast Reconstr Surg 113:391–397

    Article  PubMed  Google Scholar 

  35. Zheng H, Martin JA, Duwayri Y, Falcon G, Buckwalter JA (2007) Impact of aging on rat bone marrow-derived stem cell chondrogenesis. J Gerontol A Biol Sci Med Sci 62:136–148

    Article  PubMed  Google Scholar 

  36. Schipper BM, Marra KG, Zhang W, Donnenberg AD, Rubin JP (2008) Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 60:538–544

    Article  PubMed  CAS  Google Scholar 

  37. Shi YY, Nacamuli RP, Salim A, Longaker MT (2005) The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plast Reconstr Surg 116:1686–1696

    Article  PubMed  CAS  Google Scholar 

  38. Shiffman MA, Mirrafati S (2001) Fat transfer techniques: the effect of harvest and transfer methods on adipocyte viability and review of the literature. Dermatol Surg 27:819–824

    Article  PubMed  CAS  Google Scholar 

  39. Sterodimas A, de Faria J, Nicaretta B, Pitanguy I (2010) Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications. J Plast Reconstr Aesthet Surg 63:1886–1892

    Article  PubMed  Google Scholar 

  40. Tanzi MC, Faré S (2009) Adipose tissue engineering: state of the art, recent advances and innovative approaches. Expert Rev Med Devices 6:533–551

    Article  PubMed  Google Scholar 

  41. van Harmelen V, Skurk T, Röhrig K, Lee YM, Halbleib M, Aprath-Husmann I, Hauner H (2003) Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int J Obes Relat Metab Disord 27:889–895

    Article  PubMed  Google Scholar 

  42. Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima Y, Sato K, Inoue K, Nagase T, Koshima I, Gonda K (2006) Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 208:64–76

    Article  PubMed  CAS  Google Scholar 

  43. Yu G, Wu X, Dietrich MA, Polk P, Scott LK, Ptitsyn AA, Gimble JM (2010) Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy 12:538–546

    Article  PubMed  CAS  Google Scholar 

  44. Zeferino EG, Bueno CE, Oyama LM, Ribeiro DA (2010) Ex vivo assessment of genotoxicity and cytotoxicity in murine fibroblasts exposed to white MTA or white Portland cement with 15% bismuth oxide. Int Endod J 43:843–848

    Article  PubMed  CAS  Google Scholar 

  45. Roobrouck VD, Ulloa-Montoya F, Verfaillie CM (2008) Self-renewal and differentiation capacity of young and aged stem cells. Exp Cell Res 314:1937–1944

    Article  PubMed  CAS  Google Scholar 

  46. Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675

    Article  PubMed  CAS  Google Scholar 

  47. Zhu M, Zhou Z, Chen Y, Schreiber R, Ransom JT, Fraser JK, Hedrick MH, Pinkernell K, Kuo HC (2010) Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention. Ann Plast Surg 64:222–228

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

The authors declare that they have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mojallal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mojallal, A., Lequeux, C., Shipkov, C. et al. Influence of Age and Body Mass Index on the Yield and Proliferation Capacity of Adipose-Derived Stem Cells. Aesth Plast Surg 35, 1097–1105 (2011). https://doi.org/10.1007/s00266-011-9743-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-011-9743-7

Keywords

Navigation