Skip to main content

Advertisement

Log in

Ex Vivo Adipose Tissue Engineering by Human Marrow Stromal Cell Seeded Gelatin Sponge

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The limitation of current clinical treatment for restoration extended defects of soft tissue associated with trauma, tumor resections, and congenital deformities are well known. This study demonstrates that human bone marrow stromal cells (MSCs) can be utilized to tissue engineer adipose tissue for therapeutic purposes. Adipogenic potentials of monolayer-cultured human MSCs were evaluated by biochemical measurement of an adipogenic differentiation marker (glycerol-3-phosphate dehydrogenase, G-3-PDH) and cellular morphology. After preparation by seeding human MSCs on a 3-dimensional gelatin sponge and exposure to adipogenic differentiation medium, the ex vivo tissue-engineered adipose constructs were assessed histomorphologically and biochemically. Lipid droplets accumulated and expanded within the constructs accompanied by a significant increase of G-3-PDH activity. The present study indicates that bone MSCs could be a cell resource in tissue engineering adipose tissue, while gelatin sponge could be a good scaffold in this approach to improve the outcome of clinical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barry, F. P., and J. M. Murphy. Mesenchymal stem cells: Clinical applications and biological characterization. Int. J. Biochem. Cell Biol. 36:568–584, 2004.

    Article  CAS  PubMed  Google Scholar 

  2. Beahm, E. K., R. L. Walton, and C. W. Patrick, Jr. Progress in adipose tissue construct development. Clin. Plast. Surg. 30:547–558, 2003.

    Article  PubMed  Google Scholar 

  3. Billings, E., Jr., and J. W. May, Jr. Historical review and present status of free graft autotransplantation in plastic and reconstructive surgery. Plast. Reconstr. Surg. 83:368–381, 1989.

    PubMed  Google Scholar 

  4. Borges, J., M. C. Mueller, N. T. Padron, F. Tegtmeier, E. M. Lang, and G. B. Stark. Engineered adipose tissue supplied by functional microvessels. Tissue Eng. 9:1263–1270, 2003.

    Article  CAS  PubMed  Google Scholar 

  5. Bruder, S. P., N. Jaiswal, and S. E. Haynesworth. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem. 64:278–294, 1997.

    Article  CAS  PubMed  Google Scholar 

  6. Caplan, A. I. Tissue engineering designs for the future: New logics, old molecules. Tissue Eng. 6:1–8, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Caplan, A. I., and S. P. Bruder. Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century. Trends Mol. Med. 7:259–264, 2001.

    Article  CAS  PubMed  Google Scholar 

  8. Gamradt, S. C., and J. R. Lieberman. Genetic modification of stem cells to enhance bone repair. Ann. Biomed. Eng. 32:136–147, 2004.

    Article  PubMed  Google Scholar 

  9. Gao, J., J. E. Dennis, L. A. Solchaga, A. S. Awadallah, V. M. Goldberg, and A. I. Caplan. Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng. 7:363–371, 2001.

    CAS  PubMed  Google Scholar 

  10. Gimble, J. M., and F. Guilak. Differentiation potential of adipose derived adult stem (ADAS) cells. Curr. Top. Dev. Biol. 58:137–160, 2003.

    PubMed  Google Scholar 

  11. Halberstadt, C., C. Austin, J. Rowley, C. Culberson, A. Loebsack, S. Wyatt, S. Coleman, L. Blacksten, K. Burg, D. Mooney, and W. Holder, Jr. A hydrogel material for plastic and reconstructive applications injected into the subcutaneous space of a sheep. Tissue Eng. 8:309–319, 2002.

    CAS  PubMed  Google Scholar 

  12. Halbleib, M., T. Skurk, C. de Luca, D. von Heimburg, and H. Hauner. Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds. I: in vitro differentiation of human dipocyte precursor cells on scaffolds. Biomaterials 24:3125–3132, 2003.

    CAS  PubMed  Google Scholar 

  13. Kimura, Y., M. Ozeki, T. Inamoto, and Y. Tabata. Time course of de novo adipogenesis in matrigel by gelatin microspheres incorporating basic fibroblast growth factor. Tissue Eng. 8:603–613, 2002.

    CAS  PubMed  Google Scholar 

  14. Kimura, Y., M. Ozeki, T. Inamoto, and Y. Tabata. Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor. Biomaterials 24:2513–2521, 2003.

    CAS  PubMed  Google Scholar 

  15. Kral, J. G., and D. L. Crandall. Development of a human adipocyte synthetic polymer scaffold. Plast. Reconstr. Surg. 104:1732–1738, 1999.

    CAS  PubMed  Google Scholar 

  16. Kuo, C. K., and R. S. Tuan. Tissue engineering with mesenchymal stem cells. IEEE Eng. Med. Biol. Mag. 22:51–56, 2003.

    Google Scholar 

  17. Lee, K. Y, C. R. Halberstadt, W. D. Holder, and D. J. Mooney. Breast reconstruction. In: Principles of Tissue Engineering, edited by R. P. Lanza, R. Langer, and J. Vacanti. San Diego, CA: Academic, 2000, pp. 409–423.

    Google Scholar 

  18. Masuda, T., M. Furue, and T. Matsuda. Photocured, styrenated gelatin-based microspheres for de novo adipogenesis through corelease of basic fibroblast growth factor, insulin, and insulin-like growth factor I. Tissue Eng. 10:523–535, 2004.

    CAS  PubMed  Google Scholar 

  19. Moustaid, N., F. Lasnier, B. Hainque, A. Quignard-Boulange, and J. Pairault. Analysis of gene expression during adipogenesis in 3T3-F442A preadipocytes: Insulin and dexamethasone control. J. Cell. Biochem. 42:243–254, 1990.

    CAS  PubMed  Google Scholar 

  20. Nathan, S., De S. Das, A. Thambyah, C. Fen, J. Goh, and E. H. Lee. Cell-based therapy in the repair of osteochondral defects: A novel use for adipose tissue. Tissue Eng. 9:733–744, 2003.

    CAS  PubMed  Google Scholar 

  21. Noel, D., F. Djouad, and C. Jorgense. Regenerative medicine through mesenchymal stem cells for bone and cartilage repair. Curr. Opin. Invest. Drugs 3:1000–1004, 2002.

    Google Scholar 

  22. Pairault, J., and H. Green. A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrogenase as differentiation marker. Proc. Natl. Acad. Sci. U.S.A. 76:5138–5142, 1979.

    CAS  PubMed  Google Scholar 

  23. Patrick, C. W., Jr. Adipose tissue engineering: The future of breast and soft tissue reconstruction following tumor resection. Semin. Surg. Oncol. 19:302-311, 2000.

    PubMed  Google Scholar 

  24. Patrick, C. W., Jr. Tissue engineering strategies for adipose tissue repair. Anat. Rec. 263:361–366, 2001.

    CAS  PubMed  Google Scholar 

  25. Patrick, C. W., Jr., P. B. Chauvin, J. Hobley, and G. P. Reece. Preadipocyte seeded PLGA scaffolds for adipose tissue engineering. Tissue Eng. 5:139–151, 1999.

    CAS  PubMed  Google Scholar 

  26. Patrick, C. W., Jr., B. Zheng, C. Johnston, and G. P. Reece. Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Eng. 8:283–293, 2002.

    CAS  PubMed  Google Scholar 

  27. Petite, H., V. Viateau, W. Bensaid, A. Meunier, C. de Pollak, M. Bourguignon, K. Oudina, L. Sedel, and G. Guillemin. Tissue-engineered bone regeneration. Nat. Biotechnol. 18:959–963, 2000.

    CAS  PubMed  Google Scholar 

  28. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147, 1999.

    Article  CAS  PubMed  Google Scholar 

  29. Rengarajan, K., S. M. Cristol, M. Mehta, and J. M. Nickerson. Quantifying DNA concentrations using fluorometry: A comparison of fluorophores. Mol. Vis. 6:416–421, 2002.

    Google Scholar 

  30. Sakai, T., R. K. Li, R. D. Weisel, D. A. Mickle, E. T. Kim, Z. Q. Jia, and T. M. Yau. The fate of a tissue-engineered cardiac graft in the right ventricular outflow tract of the rat. J. Thorac. Cardiovasc. Surg. 121:932–942, 2001.

    CAS  PubMed  Google Scholar 

  31. Shenaq, S. M., and E. Yuksel. New research in breast reconstruction: Adipose tissue engineering. Clin. Plast. Surg. 29:111–125, 2002.

    PubMed  Google Scholar 

  32. Toriyama, K., N. Kawaguchi, J. Kitoh, R. Tajima, K. Inou, Y. Kitagawa, and S. Torii. Endogenous adipocyte precursor cells for regenerative soft-tissue engineering. Tissue Eng. 8:157–165, 2002.

    CAS  PubMed  Google Scholar 

  33. Ueda, H., L. Hong, M. Yamamoto, K. Shigeno, M. Inoue, T. Toba, M. Yoshitani, T. Nakamura, Y. Tabata, and Y. Shimizu. Use of collagen sponge incorporating transforming growth factor-beta1 to promote bone repair in skull defects in rabbits. Biomaterials 23:1003–1010, 2002.

    CAS  PubMed  Google Scholar 

  34. Von Heimburg, D., M. Kuberka, R. Rendchen, K. Hemmrich, G. Rau, and N. Pallua. Preadipocyte-loaded collagen scaffolds with enlarged pore size for improved soft tissue engineering. Int. J. Artif. Organs 26:1064–1076, 2003.

    CAS  PubMed  Google Scholar 

  35. Von Heimburg, D., S. Zachariah, A. Low, and N. Pallua. Influence of different biodegradable carriers on the in vivo behavior of human adipose precursor cells. Plast. Reconstr. Surg. 108:411–420, 2001.

    CAS  PubMed  Google Scholar 

  36. Zekorn, D. Modified gelatin as plasma substitutes. Bibl. Haematol. 33:131–140, 1969.

    CAS  PubMed  Google Scholar 

  37. Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7:211–228, 2001.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Hong MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, L., Peptan, I., Clark, P. et al. Ex Vivo Adipose Tissue Engineering by Human Marrow Stromal Cell Seeded Gelatin Sponge. Ann Biomed Eng 33, 511–517 (2005). https://doi.org/10.1007/s10439-005-2510-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-2510-7

Keywords

Navigation