Skip to main content
Log in

Development of periprosthetic bone mass density around the cementless Metha® short hip stem during three year follow up—a prospective radiological and clinical study

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to check the concept of the cementless Metha® short hip stem in order to find out whether proximal physiological load transfer can be achieved.

Methods

Fourty-three patients were included. Epidemiological factors were established. The Harris Hip Score was determined and measurement of bone mass density as well as osteodensitometric and radiological measurements was carried out pre-operatively, post-operatively, and after six, 12, 24, and 36 months.

Results

Harris Hip Score improved from 55.9 ± 12.4 pre-operatively to 94.8 ± 8.2 after 36 months (p < 0.001). After initial reduction of bone density in zones 1 and 7 up to six months post-operatively, there was a steady approximation of bone density to the initial values (p < 0.05).

Conclusion

The Metha® short hip stem shows good clinical results. Furthermore, there is an increase of bone density in the proximal zones 1 and 7 between six and 36 months serving as a sign of physiological load transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schulz E (1995) Alternde Gesellschaft: zur Bedeutung von Zuwanderungen für die Altersstruktur der Bevölkerung in Deutschland. DIW Wochenber 62(33):579–590

    Google Scholar 

  2. Schneider W, Knahr K (2004) Total hip replacement in younger patients. Acta Orthop Scand 75(2):142–146

    Article  PubMed  Google Scholar 

  3. Karimi D, Kallemose T, Troelsen A, Klit J (2018) Hip malformation is a very common finding in young patients scheduled for total hip arthroplasty. Arch Orthop Trauma Surg 138(4):581–589

    Article  PubMed  Google Scholar 

  4. George N, Runner P, Rickels T, Oldja R, Faizan A (2016) Anthropometric computed tomography reconstruction identifies risk factors for cortical perforation in revision total hip arthroplasty. J Arthroplast 31:2554–2558

    Article  Google Scholar 

  5. Otto M, Kriegsmann J, Gehrke T, Bertz S (2006) Abriebpartikel. Schlüssel der aseptischen Prothesenlockerung? Pathologe 27(6):447–460

    Article  CAS  PubMed  Google Scholar 

  6. Wilkinson JM, Hamer AJ, Rogers A, Stockley I, Eastell R (2003) Bone mineral density and biochemical markers of bone turnover in aseptic loosening after total hip arthroplasty. J Orthop Res 21(4):691–696

    Article  CAS  PubMed  Google Scholar 

  7. Jerosch J (ed) (2013) Kurzschaftendoprothesen: Wo liegen die Unterschiede? Deutscher Ärzteverlag, Köln

    Google Scholar 

  8. Frndak PA, Mallory TH, Lombardi AV Jr (1993) Translateral surgical approach to the hip. The abductor muscle “split”. Clin Orthop Relat Res 295:135–141

    Google Scholar 

  9. Hardinge K (1982) The direct lateral approach to the hip. J Bone Joint Surg Br 64(1):17–19

    Article  CAS  PubMed  Google Scholar 

  10. Jahnke A, Engl S, Seeger JB, Basad E, Rickert M, Ishaque BA (2015a) Influences of fit and fill following hip arthroplasty using a cementless short-stem prosthesis. Arch Orthop Trauma Surg 135(11):1609–1614

    Article  PubMed  Google Scholar 

  11. Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg 51(4):737–755

    Article  CAS  PubMed  Google Scholar 

  12. Gruen TA, McNeice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components. A radiographic analysis of loosening. Clin Orthop Relat Res 141:17–27

    Google Scholar 

  13. Engh CA, Massin P, Suthers KE (1990) Roentgenographic assessment of the biologic fixation of porous-surfaced femoral components. Clin Orthop Relat Res 257:107–128

    Google Scholar 

  14. Spitz J, Stoecker M, Clemenz N, Kempers B, Fischer M (1990) Vergleichende Messung des Knochenmineralgehaltes mit DPA und DPX - Erste klinische Erfahrungen. Rofo 152(3):340–344

    Article  CAS  PubMed  Google Scholar 

  15. Martini F, Lebherz C, Mayer F, Leichtle U, Kremling E, Sell S (2000) Precision of the measurements of periprosthetic bone mineral density in hips with a custom-made femoral stem. J Bone Joint Surg 82(7:1065–1071

    Google Scholar 

  16. Zeh A, Pankow F, Röllinhoff M, Delank S, Wohlrab D (2013) A prospective dual-energy X-ray absorptiometry study of bone remodeling after implantation of the Nanos short-stemmed prosthesis. Acta Orthop Belg 79(2):174–180

    PubMed  Google Scholar 

  17. Ercan A, Sokkar SM, Schmid G, Filler TJ, Abdelkafy A, Jerosch J (2016) Periprosthetic bone density changes after MiniHip(TM) cementless femoral short stem: one-year results of dual-energy X-ray absorptiometry study. SICOT-J 2:40

    Article  PubMed  PubMed Central  Google Scholar 

  18. Freitag T, Hein M, Wernerus D, Reichel H, Bieger R (2016) Bone remodelling after femoral short stem implantation in total hip arthroplasty: 1-year results from a randomized DEXA study. Arch Orthop Trauma Surg 136(1):125–130

    Article  PubMed  Google Scholar 

  19. Jahnke A, Engl S, Altmeyer C, Jakubowitz E, Seeger JB, Rickert M, Ishaque BA (2014) Changes of periprosthetic bone density after a cementless short hip stem: a clinical and radiological analysis. Int Orthop 38(10):2045–2050

    Article  PubMed  Google Scholar 

  20. Synder M, Krajewski K, Sibinski M, Drobniewski M (2015) Periprosthetic bone remodeling around short stem. Orthopedics 38(3):40–45

    Article  Google Scholar 

  21. Lerch M, Haar-Tran A, Windhagen H, Behrens BA, Wefstaedt P, Stukenborg-Colsman CM (2012) Bone remodelling around the Metha short stem in total hip arthroplasty: a prospective dual-energy X-ray absorptiometry study. Int Orthop 36(3):533–538

    Article  PubMed  Google Scholar 

  22. Wolff J (1899) Die Lehre von der functionellen Knochengestalt. Virchows Arch 155(2):256–315

    Article  Google Scholar 

  23. Katano H (2007) Periprosthetic bone mineral density in bicontact system. Five to ten years follow-up. In: Weller S, Braun A, Eingartner C, Maurer F, Weise K, Winter E, Volkmann R (eds) The bicontact hiparthroplasty system 1987–2007. Georg Thieme Verlag, Tübingen, pp 63–69

    Google Scholar 

  24. Chen H, Morrey BF, An KN, Luo ZP (2009) Bone remodeling characteristics of a short-stemmed total hip replacement. J Arthroplast 24(6):945–950

    Article  CAS  Google Scholar 

  25. Yan SG, Weber P, Steinbrück A, Hua X, Jansson V, Schmidutz F (2017) Periprosthetic bone remodelling of short-stem total hip arthroplasty: a systematic review. Int Orthop 96(47):1–10

    Google Scholar 

  26. Cho YJ, Bae CI, Yoon WK, Chun YS, Rhyu KH (2018) High incidence of early subtrochanteric lateral cortical atrophy after hip arthroplasty using bone-conserving short stem. Int Orthop 42(2):303–309

    Article  PubMed  Google Scholar 

  27. Learmonth ID, Grobler GP, Dall DM, Jandera V (1995) Loss of bone stock with cementless hip arthroplasty. J Arthroplast 10(3):257–263

    Article  CAS  Google Scholar 

  28. Froimson MI, Garino J, Machenaud A, Vidalain JP (2007) Minimum 10-year results of a tapered, titanium, hydroxyapatite-coated hip stem: an independent review. J Arthroplast 22(1):1–7

    Article  Google Scholar 

  29. Bieger R, Ignatius A, Reichel H, Dürselen L (2013) Biomechanics of a short stem: in vitro primary stability and stress shielding of a conservative cementless hip stem. J Orthop 31(8):1180–1186

    Google Scholar 

  30. Kim SM, Han SB, Rhyu KH, Yoo JJ, Oh KJ, Yoo JH, Lee KJ, Lim SJ (2018) Periprosthetic femoral fracture as cause of early revision after short stem hip arthroplasty-a multicentric analysis. Int Orthop 12:1–8

    Google Scholar 

  31. Panisello JJ, Herrero L, Canales V, Herrera A, Martinez AA, Mateo J (2009) Long-term remodeling in proximal femur around a hydroxyapatite-coated anatomic stem: ten years densitometric follow-up. J Arthroplast 24(1):56–64

    Article  Google Scholar 

  32. Skoldenberg OG, Boden HS, Salemyr MO, Ahl TE, Adolphson PY (2006) Periprosthetic proximal bone loss after uncemented hip arthroplasty is related to stem size: DXA measurements in 138 patients followed for 2-7 years. Acta Orthop 77(3):386–392

    Article  PubMed  Google Scholar 

  33. Sariali E, Knaffo Y (2017) Three-dimensional analysis of the proximal anterior femoral flare and torsion. Anatomic bases for metaphyseally fixed short stems design. Int Orthop 41(10):2017–2023

    Article  PubMed  Google Scholar 

  34. Floerkemeier T, Tscheuschner N, Calliess T, Ezechieli M, Floerkemeier S, Budde S et al (2012) Cementless short stem hip arthroplasty METHA® as an encouraging option in adults with osteonecrosis of the femoral head. Arch Orthop Trauma Surg 132(8):1125–1131

    Article  PubMed  Google Scholar 

  35. Brinkmann V, Radetzki F, Delank KS, Wohlrab D, Zeh A (2015) A prospective randomized radiographic and dual-energy X-ray. J Orthopaed Traumatol 16(3):237–243

    Article  Google Scholar 

  36. Miladi M, Villain B, Mebtouche N, Bégué T, Aurégan JC (2018) Interest of short implants in hip arthroplasty for osteonecrosis of the femoral head: comparative study “uncemented short” vs “cemented conventional” femoral stems. Int Orthop 42(7):1669–1674

    Article  PubMed  Google Scholar 

  37. Merschin D, Häne R, Tohidnezhad M, Pufe T, Drescher W (2018) Bone-preserving total hip arthroplasty in avascular necrosis of the hip-a matched-pairs analysis. Int Orthop 42(7):1509–1516

    Article  PubMed  Google Scholar 

  38. Jahnke A, Engl S, Seeger JB, Basad E, Rickert M, Ishaque BA (2015b) Influences of fit and fill following hip arthroplasty using a cementless short-stem prosthesis. Arch Orthop Trauma Surg 135(11):1609–1614. https://doi.org/10.1007/s00402-015-2302-y. Epub 2015 Aug 14

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Alexander Ishaque.

Ethics declarations

This study was preceded by approval from the University Ethics Committee (reference 152/09).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augustin, L., Boller, S., Bobach, C. et al. Development of periprosthetic bone mass density around the cementless Metha® short hip stem during three year follow up—a prospective radiological and clinical study. International Orthopaedics (SICOT) 43, 2031–2037 (2019). https://doi.org/10.1007/s00264-018-4126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-018-4126-1

Keywords

Navigation